| Centre Number | Candidate Number | Name |
| :--- | :--- | :--- |

## CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

## MATHEMATICS

## Paper 3

May/June 2003
2 hours
Candidates answer on the Question Paper.
Additional Materials: Electronic calculator
Geometrical instruments
Mathematical tables (optional)
Tracing paper (optional)

## READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen in the spaces provided on the Question Paper.
You may use a soft pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.
If working is needed for any question it must be shown below that question.
The number of marks is given in brackets [ ] at the end of each question or part question.
The total of the marks for this paper is 104 .
Electronic calculators should be used.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For $\pi$, use either your calculator value or 3.142.

If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page.

Stick your personal label here, if provided.

This document consists of 13 printed pages and 3 blank pages.

1 Fifty students take part in a quiz.
The table shows the results.

| Number of correct answers | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number of students | 4 | 7 | 8 | 7 | 10 | 6 | 5 | 3 |

(a) How many students had 6 correct answers?

$$
\begin{equation*}
\text { Answer }(a) \ldots \ldots \ldots \tag{1}
\end{equation*}
$$

(b) How many students had less than 11 correct answers?

$$
\begin{equation*}
4+7+8+7+10+6=42 \tag{1}
\end{equation*}
$$


(c) Find
(i) the modal number of correct answers,
Answer(c)(i).............
(ii) the median number of correct answers,

For 50 students the median is between the 25 th and the 26 th when in order.
Both have 8 correct answers, which is the median.
Answer(c)(ii)..............
(iii) the mean number of correct answers.
$(4 \times 5)+(7 \times 6)+(8 \times 7)+(7 \times 8)+(10 \times 9)+(6 \times 10)+(5 \times 11)+(3 \times 12)$

$$
=415
$$

$$
\begin{gathered}
415 \div 50 \\
=8.3
\end{gathered}
$$

Answer(c)(iii).............
(d) A bar chart is drawn to show the results.

The height of the bar for the number of students who had 5 correct answers is 2 cm . What is the height of the bar for the number of students who had 9 correct answers?

> 5 correct, 4 students with height 2 cm .
> So cm represents 2 students.

9 correct is 10 students, represented by $10 \div 2=5 \mathrm{~cm}$
$\qquad$
(e) A pie chart is drawn to show the results.

What is the angle for the number of students who had 11 correct answers?

> 5 students had ॥correct answers.
> Angle $=5 \div 50 \times 360$

Answer (e) ...................
(f) The students who had the most correct answers shared a top prize of $\$ 22.50$. How much did each of these students receive?

$$
\begin{align*}
& 3 \text { students shared the prize of } \$ 22.50 \text { F } \\
& \text { Each received } 22.5 \div 3 \\
& =\$ 7.50 \\
& \text { Answer(f) } \$ \ldots . . . . . . . . . . \tag{2}
\end{align*}
$$

(g) Work out the percentage of students who had less than 7 correct answers.

$$
\begin{aligned}
& 11 \text { students had less than } 7 \text { correct. } \\
& \begin{array}{c}
11 \div 50 \times 100 \\
=22 \%
\end{array}
\end{aligned}
$$

$$
\begin{equation*}
\text { Answer }(g) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \tag{2}
\end{equation*}
$$

(h) A student is chosen at random from the fifty students.

What is the probability that this student had
(i) exactly 10 correct answers,

$$
\begin{equation*}
\frac{6}{50} \text { or } 0.12 \text { or } 12 \% \tag{1}
\end{equation*}
$$

Answer(h)(i)..................
(ii) at least 10 correct answers,

$$
(6+5+3) \div 50=\frac{14}{50}
$$

(iii) more than 1 correct answer?

$$
\begin{equation*}
\text { Answer }(h)(\mathrm{ii}) \ldots \ldots \ldots \frac{14}{50} \tag{1}
\end{equation*}
$$

2 (a) Complete the table for the equation $y=\frac{120}{x}$.

| $x$ | 1 | 1.5 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 120 | 80 | 60 | 40 | 30 | 24 | 20 |

(b) On the grid below, draw the curve $y=\frac{120}{x}$ for $1 \leqslant x \leqslant 6$.

(c) Use your graph to find $x$ when $y=70$.

$$
\text { Answer(c) } x=\ldots \ldots \ldots .7 \ldots \ldots \ldots
$$

(d) Complete the table for the equation $y=120-20 x$.

| $x$ | 0 | 2 | 4 | 6 |
| :---: | :---: | :---: | :---: | :---: |
| $y$ | 120 | 80 | 40 | 0 |

(e) On the same grid above, draw the graph of $y=120-20 x$ for $0 \leqslant x \leqslant 6$.
(f) The graphs of $y=\frac{120}{x}$ and $y=120-20 x \quad$ intersect at two points. Write down the coordinates of these two points.

$$
\text { Answer }(f)(1.2-1.4,9.2-96) \text { and }(4.6-4.8,24-26)
$$

(g) Write down the gradient of the line $y=120-20 x$.

$$
\begin{equation*}
\text { Answer }(g) \ldots \ldots \ldots \ldots \tag{2}
\end{equation*}
$$

3 (a) Bottles of water cost 25 cents each.
(i) Find the cost of 7 bottles in cents.

$$
\begin{equation*}
7 \times 25=175 \text { cents } \tag{1}
\end{equation*}
$$

Answer(a)(i).................cents
(ii) Write down an expression in $b$ for the cost of $b$ bottles in cents.

$$
b \times 25 \text { or better is } 25 b
$$

Answer(a)(ii).....25b......cents
(iii) Change your answer to part (i) into dollars.

$$
175 \text { cents }=\$ 1.75
$$

Answer(a)(iii) \$..........................
(iv) Write down an expression in $b$ for the cost of $b$ bottles in dollars.

$$
25 b / 100 \text { or } b / 4 \text { or } 0.25 b
$$

Answer(a)(iv) \$.......2.5b........
(b) The total cost, $T$, of $n$ bars of chocolate is given by $T=n c$.
(i) Write $c$ in terms of $T$ and $n$.

$$
T=n c \Rightarrow c=T / n
$$

$$
\begin{equation*}
\text { Answer(b)(i) } c=\ldots \ldots \ldots \ldots \ldots \ldots \ldots \tag{1}
\end{equation*}
$$

(ii) What does $c$ represent?

Answer(b)(ii) .................................................................
(c) The average cost of a book is $\$ A$.
(i) The total cost of 8 books is $\$ 36$.

Find the value of $A$.
(ii) One of the 8 books is removed.

The cost of this book is $\$ 6.60$. Find the new value of $A$.

$$
\begin{aligned}
A=(\$ 36- & \$ 6.60) / 7 \\
& =\$ 4.20
\end{aligned}
$$

$$
\begin{equation*}
\text { Answer }(c)(\mathrm{ii)} A=\ldots \$ \$ 4.20 \ldots \ldots \tag{2}
\end{equation*}
$$

$$
\begin{align*}
& A=\$ 36 \div 8=\$ 4.5(0) \tag{1}
\end{align*}
$$

(iii) The total cost of $x$ books is $\$ y$.

Write an expression for $A$ in terms of $x$ and $y$.

$$
\begin{equation*}
\text { Answer(c)(iii) } A=. y / x \ldots \ldots \ldots \tag{1}
\end{equation*}
$$

(iv) One of the $x$ books is removed.

The cost of this book is $\$ 7$.
Write a new expression for $A$ in terms of $x$ and $y$.

$$
\operatorname{Answer}(c)(\mathrm{iv}) A=(y-7) /(x-1)_{[2]}
$$


(a) Draw accurately the image of triangle $T$ under the following transformations.
(i) Translate triangle $T$ by the vector $\binom{-3}{4}$. Label it $P$.
(ii) Reflect triangle $T$ in the line $x=8$. Label it $Q$.
(iii) Rotate triangle $T$ about the point $A$ through $90^{\circ}$ anti-clockwise. Label it $R$.
(iv) Enlarge triangle $T$ with centre of enlargement $A$ and scale factor 2 . Label it $S$.
(b) Describe fully the single transformation which maps
(i) triangle $P$ onto triangle $T$,

Answer $\left.(b)(i) \ldots \ldots . . \begin{array}{l}P \\ \end{array}\right)$ is a translation with vector $\binom{3}{-4}$.
(ii) triangle $S$ onto triangle $T$.

Answer(b)(ii).
Enlargement scale Factor $1 / 2$ Centre A
(c) The rectangle $D E F G$ is rotated onto the rectangle $K L M N$, with $D$ mapped onto $K$. Write down
(i) the angle of the rotation,
Answer(c)(i).............
(ii) the coordinates of the centre of the rotation.


The quarter-circle above has centre $O$ and radius 7 cm .
(a) Using a straight edge and compasses only construct
(i) the perpendicular bisector of $A O$,
(ii) the locus of points inside the quarter-circle which are 5 cm from $O$.
(b) Shade the region, inside the quarter-circle, containing the points which are more than 5 cm from $O$ and nearer to $A$ than $O$.
(c) (i) The line $O X$ bisects angle $A O B$ and is 12 cm long.

Draw $O X$ accurately.
(ii) Draw accurately the tangent to the quarter-circle at $A$.
(iii) This tangent meets the line $O X$ at $Y$.

Measure the length of $A Y$.


In the diagram above, all the angles are right angles.
(a) Show that the area of the shape is $13.5 \mathrm{~cm}^{2}$.

$$
\begin{align*}
\text { Answer(a) Area }= & (9 \times 1)+(1.5 \times 1 \times 3) \\
& =9+4.5=13.5 \tag{2}
\end{align*}
$$

(b) The shape is the cross-section of a metal prism of length 2.8 metres.

Calculate the volume of the prism in cubic centimetres.

$$
\begin{array}{rlrl}
\text { Volume }=\text { Area of cross-section } \times \text { length } & \text { Volume }=13.5 \times 280 \\
& =13.5 \text { square } \mathrm{cm} \times 2.8 \mathrm{~m} & & =3780 \mathrm{cmbic} \mathrm{~cm} . \\
2.8 \mathrm{~m} & =280 \mathrm{~cm} & &
\end{array}
$$

$$
\begin{equation*}
\text { Answer (b)....3780..............cm }{ }^{3} \tag{3}
\end{equation*}
$$

(c) A metal cuboid is melted down so that prisms as described in part (b) can be made. The cuboid measures 2 metres by 1.2 metres by 0.8 metres.
(i) Calculate the volume of the cuboid in cubic metres,

Volume $=$ length $\times$ width $\times$ height
$=2 \times 1.2 \times 0.8$

$$
\begin{array}{ll}
=1.92 \text { cubic metres } \quad \text { Answer }(c)(\mathrm{i}) \ldots \ldots \ldots . .1 .92 \ldots \ldots . . \mathrm{m}^{3}
\end{array}
$$

(ii) Calculate the volume of the cuboid in cubic centimetres.

All measurements in centimetres gives $200 \times 120 \times 80$

$$
\begin{equation*}
\text { Answer(c)(ii).! } 920000 \ldots \mathrm{~cm}^{3} \tag{2}
\end{equation*}
$$

(iii) Calculate the number of prisms which can be made.

Number of prisms is volume in (c)(u) $\div$ volume in (b)

$$
=1920000 \div 3780
$$

$$
=507.936 \ldots
$$

$$
=507
$$

Answer(c)(iii)........507.
(d) Draw any lines of symmetry of the shape on the diagram above.
(e) Describe the rotational symmetry of the shape above.

Answer(e)........................order) ! or no symmetry.


The graph shows the temperature of a cup of tea cooling down in a room.
(a) What is the temperature of the tea after
(i) 0 minutes,

$$
\text { Answer(a)(i)....... } 84^{\circ} \ldots \ldots . . . . . . .
$$

(ii) 20 minutes?
(b) After how many minutes is its temperature $30^{\circ} \mathrm{C}$ ?
Answer(b)............................
(c) By how much has its temperature gone down between 4 minutes and 8 minutes?
the temperature has gone from 52 to 36 degrees.

(d) (i) Complete the table which shows falls in temperature.

| Between | 0 and 4 <br> minutes | 4 and 8 <br> minutes | 8 and 12 <br> minutes | 12 and 16 <br> minutes |
| :---: | :---: | :---: | :---: | :---: |
| Fall in temperature | 32 | 16 | 8 | 4 |

(ii) What pattern do you notice about these falls in temperature?
Answer(d)(ii)............................................
(e) Estimate the room temperature.

Diagram 1


3 dots
1 triangle

Diagram 2


4 dots 3 triangles

Diagram 3


5 dots
6 triangles

Diagram 4


6 dots
10 triangles

Look at the diagrams above.
(a) Complete Diagram 4 to continue the pattern.
(b) Complete the table below.


| Diagram | 1 | 2 | 3 | 4 | 5 |  | $n$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number of dots | 3 | 4 | 5 | 6 | 7 |  | $n+2$ |

(c) Complete the table below.

| Diagram | 1 | 2 | 3 | 4 | 5 | 6 |  | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number of triangles | 1 | 3 | 6 | 10 | 15 | 21 |  | 55 |

(d) A line is now drawn inside each of the diagrams as shown below.

Diagram 1


2 triangles

Diagram 2


6 triangles

Diagram 3


How many triangles are there in Diagram 3?
Answer(d)..........

## BLANK PAGE

## BLANK PAGE

## BLANK PAGE

# Summary of Comments on IGCSE Mathematics Paper 3 June 2003 

## Page: 2

Q1(a) Reading the table for 6 correct answers.

Q1(b) Take care not to include 11.

Q1(c)(i) 10 is identified as the highest frequency but the mode is the number of correct answers with the highest frequency. Need to find the number of correct answers for the middle when in order.
(ii) There are four less than 6, eleven less than 7, nineteen less than 8 and twenty-six less than 9 . So the $25^{\text {th }}$ and $26^{\text {th }}$ in order both have 8 correct answers.
(iii) Mean is the total number of correct answers divided by the total number of students. 4 students had 5 correct giving $4 \times 5=20$ correct answers, and so on for the total number of correct answers.

Q1(d) Alternatively, 4 students with height 2 cm . 10 students with height $10 \div 4 \times 2=5 \mathrm{~cm}$. Take care to use number of students, not number of answers which would give $9 \div 5 \times 2=3$. 6 .

Page: 3

Q1(e) Again take care not to give $11 \div 50 \times 360$.
The whole pie chart is $360^{\circ}$. Each sector is a fraction of 360 .

Q1(f) Identify 3 students who had 12 correct answers and then divide the prize by three.

Q1(g) Percentage =
Number in the required section $\times 100$
Total Number
Take care not to include the 8 students with 7 correct.
SC 1 was awarded for 19/50.

Q1(h) Probability must be either fraction, decimal or percentage and no other form should be used. Also make sure that the value of any probability is between 0 and 1 .

## Page: 4

Q2(a) Divide 120 by each of the $x$ values to find the $y$ values.

Q2(b) Plot the points carefully and join with a smooth curve. The curve should go through all the points with no gaps.

Q2(c) $\quad 1.6$ to 1.8 allowed. Give the $x$ value as accurately as possible.

Q2(d) Multiply $x$ by 20 and subtract from 120 .

Q2(e) The line should be drawn using a ruler and go through all the points.

## Page: 5

Q2(f) While these are the expected ranges, the values marked should be from the candidate's graph, provided the graph is the basically correct shape.

Q2(g) An understanding of $y=m x+c$ would immediately give the value of $m$, the gradient.
Alternatively M1 is awarded for rise/run seen but the second mark is for the exact answer.
SC1 is given for an answer of 20 .

## Page: 6

Q3(a)(i) Straightforward multiplication.
(ii) Replace the number by the letter to give the expression.
(iii) Divide by 100 ( 100 cents $=\$ 1$ ).
(iv) Simplest form is not asked for but is acceptable provided simplification is done correctly.

Q3(b)(i) Divide both sides by $n$. Avoid the common error of $c=T n$.
(ii) A very specific statement is needed. Do not just write 'cost' or 'chocolate'.

Q3(c)(i) Straightforward division.
(ii) Be careful with a calculator. Either use brackets or work out the subtraction first, ( $\$ 29.40$ ) and then divide by 7 .
(iii) If the working in parts (i) and (ii) is shown it is easier to substitute the numbers with the appropriate letters.
(iv) Remember that there is one less book in part (iv) although B1 was awarded for one of the two expressions seen.

Page: 8

Q4(a)(i) The triangle T is moved 3 squares to the left and 4 squares up.
(ii) $\quad x=8$ is the vertical line through 8 on the horizontal axis.
(iii) Make sure the rotation is in the correct direction and through the angle of $90^{\circ}$.
(iv) As the centre A is on the triangle, it stays in the same place. The distances of the other points from $A$ are doubled.
The use of tracing paper is strongly recommended for the first three parts. Centres should provide it for the examination.

## Page: 9

Q4(b)(i) This is the reverse of (a)(i) and so only the signs change.
(ii) Still enlargement even though it reduces. Scale factor is the inverse of multiplying by two but expressed as $1 / 2$. The centre remains the same.

Q4(c)(i) Direction and centre are not required here. Best not to give what is not asked for. ' $270^{\circ}$ clockwise' would be acceptable but not just '270ㅇ.
(ii) Here the centre must be the same distance from $K$ as it is from $D$. Tracing paper again could help but it is not difficult to realise that it is at the intersection of DG and KN.

Page: 10

Q5 (a)(i) Place the compass point at O , with radius greater than 3.5 cm and draw arcs above and below the line OA. With the same radius, place the compass point at A and draw arcs intersecting the previous arcs. Join the intersection points of the arcs.
(a)(ii) Set the compasses to 5 cm and draw a quarter circle centre O.
(b) Shade the region of the quarter-circle radius 5 cm which is to the right of the bisector of $A O$.
(c)(i) Place the compass point at O and draw short arcs on OB and OA. Open the compasses to a larger radius, place the point on the intersections of these arcs and create two intersecting arcs. Join this intersection point to $O$ and extend the line to 12 cm .
(c)(ii) Draw a vertical line just touching the point $A$.

Q5(c)(iii) 6.8 to 7.2 cm
(The diagram is accurate to the measurements, when printed out, and it shows the method for the various constructions)

## Construction lines are vital and should be clearly seen

Page: 11

Q6(a) Where the answer is given in the question full working must be shown together with a statement of the answer. There are several other correct methods of splitting the shape to find the area. The second M mark is for using correct values for the offered solution.

Q6(b) As the Area is given in part (a), it should be used to find the volume. Conversion of 2.8 m to cm is necessary for units to agree.

Q6(c)(i) Standard volume formula for a cuboid.
(ii) Alternatively, as $100 \mathrm{~cm}=1 \mathrm{~m}$
$100^{3}$ cubic $\mathrm{cm}=1$ cubic m $1.92 \times 1000000$ is calculated. With this method take care not to give the common error of $1000 \mathrm{cu} . \mathrm{cm}$. $=1 \mathrm{cu} . \mathrm{m}$
(iii) As this is referring to complete prisms the answer is not rounded up.

This question is a case of follow through marks being given if an early error is made but the working is shown.

Q6(e) Shapes that display no rotational symmetry are said to have order 1 , since in turning the shape through $360^{\circ}$ it is on top of itself just once.
Order 0 does not exist.

Page: 12

Q7(a) Careful reading of the vertical scale. It is 2 degrees for each small square.

Q7(b) Careful reading of the horizontal scale. 2 minutes for each large square.

Q7(c) Again careful reading of the scale.

Q7(d) Continue in the same way as part (c).

Page: 13

Q7(e) After 20 minutes it would be expected that the tea would be nearly down to room temperature, but would not go below. The graph indicates that it is reducing at a slower rate and a limit of 20 degrees seems likely. Answers greater than 20 but less than 22 are acceptable.

Q8(a) Three lines need to be drawn from the top vertex creating 6 dots and 10 triangles.
Use a ruler and show the dots clearly.

Q8(b) Observe the pattern is to add 2 to the diagram number to find the number of dots. The algebraic expression expresses this rule.

Q8(c) The difference between the number of triangles increases by 1 each time. These are in fact known as triangle numbers.

Easiest method for diagram 10 is to continue progressively until that that value is reached.

Q8(d) The extra line causes the number of triangles to be doubled. Although it is possible to count the triangles, it is very easy to miss 1 or more of them.
Later parts of questions are usually related to earlier parts and give some progression towards the solutions of the more difficult parts of a question.
SC1 mark awarded for 10 or 11 triangles found.

