

General Certificate of Education

Mathematics 6360

MPC2 Pure Core 2

Mark Scheme

2007 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

m or dM mark is dependent on one or more M marks and is for method A mark is dependent on M or m marks and is for accuracy B mark is independent of M or m marks and is for method and accuracy E mark is for explanation ✓or ft or F follow through from previous incorrect result MC mis-copy CAO correct answer only MR mis-read CSO correct solution only RA required accuracy AWFW anything which falls within FW further work	M	mark is for method			
B mark is independent of M or m marks and is for method and accuracy E mark is for explanation ✓or ft or F follow through from previous incorrect result MC mis-copy CAO correct answer only MR mis-read CSO correct solution only RA required accuracy AWFW anything which falls within FW further work	m or dM	mark is dependent on one or more M marks and is for method			
E mark is for explanation ✓or ft or F follow through from previous incorrect result MC mis-copy CAO correct answer only MR mis-read CSO correct solution only RA required accuracy AWFW anything which falls within FW further work	A	mark is dependent on M or m marks and is for accuracy			
✓or ft or F follow through from previous incorrect result MC mis-copy CAO correct answer only MR mis-read CSO correct solution only RA required accuracy AWFW anything which falls within FW further work	В				
incorrect result CAO correct answer only CSO correct solution only AWFW anything which falls within MC mis-copy MR mis-read RA required accuracy further work	E	mark is for explanation			
incorrect result CAO correct answer only CSO correct solution only AWFW anything which falls within MC mis-copy MR mis-read RA required accuracy further work					
CAO correct answer only MR mis-read CSO correct solution only RA required accuracy AWFW anything which falls within FW further work	$\sqrt{\text{or ft or F}}$	<u> </u>			
CSO correct solution only RA required accuracy AWFW anything which falls within FW further work		incorrect result	MC	mis-copy	
AWFW anything which falls within FW further work	CAO		MR	mis-read	
	CSO		RA	required accuracy	
	AWFW	anything which falls within	FW	further work	
AWRT anything which rounds to ISW ignore subsequent work	AWRT	anything which rounds to	ISW	ignore subsequent work	
ACF any correct form FIW from incorrect work	ACF	any correct form	FIW	from incorrect work	
AG answer given BOD given benefit of doubt	AG	answer given	BOD	given benefit of doubt	
SC special case WR work replaced by candidate	SC	special case	WR	work replaced by candidate	
OE or equivalent FB formulae book	OE	or equivalent	FB	formulae book	
A2,1 2 or 1 (or 0) accuracy marks NOS not on scheme	A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme	
-x EE deduct x marks for each error G graph	–x EE	deduct x marks for each error	G	graph	
NMS no method shown c candidate	NMS	no method shown	c	candidate	
PI possibly implied sf significant figure(s)	PI	possibly implied	sf	significant figure(s)	
SCA substantially correct approach dp decimal place(s)	SCA	substantially correct approach	dp		

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

June 07

MPC2

Q	Solution	Marks	Total	Comments
1(a)(i)	x^2	B1	1	
(ii)	1			
(11)	$x^{\frac{1}{2}} = \sqrt{x}$	B1	1	Accept either form
				· · · · · · ·
(iii)	x^3	B1	1	
(b)(i)	$\frac{1}{2}$ $\frac{3}{2}$			
	$\int 3x^2 dx = \frac{3}{2}x^2 \ \{+c\}$	M1		Index raised by 1
	$\int 3x^{\frac{1}{2}} dx = \frac{3}{\frac{3}{2}}x^{\frac{3}{2}} + c$	A1		Simplification not yet required
	2			
	$=2x^{\frac{3}{2}}+c$	A1	3	Need simplification and the $+ c$ OE
	$=2x^2+c$	Al	3	Need simplification and the + c OE
(40)				
(ii)	$\int_{1}^{9} 3x^{\frac{1}{2}} dx = (2 \times 9^{\frac{3}{2}}) - (2 \times 1^{\frac{3}{2}})$	M1		F(9) - F(1), where $F(x)$ is candidate's
	$\int_{1}^{3N} dx \left(2^{N-3}\right) \left(2^{N-1}\right)$	IVI 1		answer to (b)(i) [or clear recovery]
				answer to (b)(i) [or crear recovery]
	= 52	A1ft	2	Ft on (b)(i) answer of form $kx^{1.5}$ i.e. $26k$
	Total		8	
2(a)	$u_1 = 12$	B1		
	$ u_1 = 12 u_2 = 3 \times 4^2 = 48 $	B1	2	CSO AG (be convinced)
(b)	r=4	B1	1	
` ′		Di	1	
(c)(i)	$a(1-r^{12})$			
	$\{S_{12} =\} \frac{1-r}{1-r}$	M1		OE Using a correct formula with $n = 12$
	$\{S_{12} = \} \frac{a(1-r^{12})}{1-r}$			
	$=\frac{12(1-4^{12})}{}$	A1ft		Ft on answer for u_1 in (a) and r in (b)
	1-4			
	$= \frac{12(1-4^{12})}{-3} = -4(1-4^{12}) = 4^{13}-4$	A1	3	CAO Accept $k = 13$ for 4^{13} term
	$\begin{bmatrix} -\frac{1}{3} & -\frac{1}{3$	Al	3	CAO Accept k = 13 101 4 term
(ii)	$\sum_{n=2}^{12} u_n = (4^{13} - 4) - u_1$			
	$\sum_{n=2}^{u_n-(+-+)-u_1}u_1$	D1	1	
	= 67108848	B1	1	
	Total		7	

MPC2 (cont)

MPC2 (cont				
Q	Solution	Marks	Total	Comments
3(a)	$Arc = r\theta$	M1		For $r\theta$ or 20θ or PI by 20×1.4
	$28 = 20\theta \implies \theta = 1.4$	A1	2	AG
(b)	Area of sector = $\frac{1}{2}r^2\theta$	M1		$\frac{1}{2}r^2\theta$ OE seen
(c)(i)	$= \frac{1}{2}20^2(1.4) = 280 \text{ (cm}^2.)$	A1	2	Condone absent cm ² .
(c)(i)	Area triangle = $\frac{1}{2} \times 15 \times 20 \times \sin 1.4$ (= 147.8)	M1		Use of $\frac{1}{2}ab\sin C$ OE
	Shaded area = Area of sector – area of triangle	M1		
	$= 280 - 147.8 = 132 \text{ (cm}^2.) \text{ (3sf)}$	A1ft	3	Ft on [ans (b) -147.8] to 3sf provided [] > 0
(ii)	$\{BD^2 = \{15^2 + 20^2 - 2 \times 15 \times 20\cos 1.4\}$	M1		RHS of cosine rule used
	= 225 + 400 - 101.98	m1		Correct order of evaluation
	$\Rightarrow BD = \sqrt{523.019} = 22.86$	A1	3	Condone absent cm
	= 22.9 (cm) to 3 sf	111	10	
4(a)			10	Formula for S_n with $n = 29$ substituted and
(4)	$\{S_{29} = \}\frac{29}{2} [2a + 28d]$	M1		with a and d
	29 (a + 14d) = 1102	m1		Equation formed then some manipulation
	$a + 14d = \frac{1102}{29} \Rightarrow a + 14d = 38$	A1	3	CSO AG
(b)	$u_2 = a + d u_7 = a + 6d$	B1		Either expression correct
	$u_2 + u_7 = 13 \Rightarrow 2a + 7d = 13$	M1		Forming equation using $u_2 \& u_7$ both in form $a + kd$
	e.g. $21d = 63$; $3a = -12$	m1		Solving $a + 14d = 38$ with candidate's $2a + 7d = 13$ ' to at least stage of elimination of either a or d
	a = -4 $d = 3$	A 1	4	Both correct
	Total		7	

MPC2 (cont)

MPC2 (cont	Solution	Marks	Total	Comments
5(a)	$y_P = 4$	B1	1	
(b)	$y = 1 + \frac{2}{x} + \frac{2}{x} + \frac{4}{x^2}$	B2,1,0	2	(B1 if only one error in the expansion) For B2 the last line of the candidate's solution must be correct
(c)	$y = 1 + 4x^{-1} + 4x^{-2}$ $\frac{dy}{dx} = -4x^{-2} - 8x^{-3}$	M1 A1ft A1	3	Index reduced by 1 after differentiating <i>x</i> to a negative power At least 1 term in <i>x</i> correct ft on expn CSO Full correct solution. ACF
(d)	When $x = 2$, $\frac{dy}{dx} = -4 \times 2^{-2} - 8 \times 2^{-3}$ Gradient = -1 -1 = -2	M1 A1	2	Attempt to find <i>y</i> ′(2). AG (be convinced-no errors seen)
(e)	$-2\times m'=-1$	M1		$m_1 \times m_2 = -1$ OE stated or used. PI
	$-2 \times m' = -1$ $y - 4 = m(x - 2)$	M1		C's y_P from part (a) if not recovered; m must be numerical.
	$y-4=\frac{1}{2}(x-2)$	A1ft		Ft on candidate's y_P from part (a) if not recovered.
	x - 2y + 6 = 0	A1	4	CAO Must be this or $0 = x - 2y + 6$
	Total		12	
6(a)	$y_A = 3\left(2^0 + 1\right)$	M1		Substituting $x = 0$ PI
	= 6	A1	2	
(b)	$h = 2$ Integral = $h/2 \{ \dots \}$	B1		PI
	$\{\} = f(0) + 2[f(2) + f(4)] + f(6)$	M1		OE summing of areas of the three traps.
	$\{\} = 6 + 2[3 \times 5 + 3 \times 17] + 3 \times 65$	A1		Condone 1 numerical slip {ft on (a) for
	= 6 + 2[15 + 51] + 195			$f(0)$ if not recovered} [Sum of 3 traps. = $21 + 66 + 246$]
	Integral = 333	A1	4	CAO
(c)(i)	$21 = 3\left(2^x + 1\right) \Longrightarrow 2^x = 6$	B1	1	AG (be convinced)
(ii)	$\log_{10} 2^x = \log_{10} 6$	M1		Take ln or \log_{10} of both sides of $a^x = b$
	$x\log_{10} 2 = \log_{10} 6$	m1		or other relevant base if clear. The equation $a^x = b$ used must be correct. Use of $\log 2^x = x \log 2$ OE
	$x = \frac{\lg 6}{\lg 2} = 2.5849 = 2.58 \text{ to 3sf}$	A1	3	Both method marks must have been awarded.
	Total		10	

MPC2 (cont)

MPC2 (cont		36.1	TF 4 1	
Q	Solution	Marks	Total	Comments
7(a)	y	M1		Correct shape of branch from O {to 90°} or correct shapes of branches from 90°-360°
	O 90° 180° 270° 360° x	A1		Complete graph for $0^{\circ} \le x \le 360^{\circ}$ (Asymptotes not explicitly required but graphs should show 'tendency')
		A1	3	Correct scaling on x-axis $0^{\circ} \le x \le 360^{\circ}$
(b)	61°; 241°	B1 B1	2	For 61° For 241° and no 'extras' in the interval $0^{\circ} \le x \le 360^{\circ}$
(c)(i)	$\sin \theta = -\cos \theta \implies \frac{\sin \theta}{\cos \theta} = -1$ $\implies \tan \theta = -1.$	B1	1	AG; be convinced that the identity $\sin \theta$
	→ tano == 1.			$\frac{\sin \theta}{\cos \theta} = \tan \theta \text{ is known and validly used}$
(ii)	$\Rightarrow \tan(x-20^\circ) = -1$	M1		
	$x - 20^{\circ} = \tan^{-1}(-1)$ $x - 20^{\circ} = 135^{\circ}, 315^{\circ} \dots$	m1		
	$x = 20^{\circ} - 133^{\circ}, 313^{\circ} \dots$ $x = 155^{\circ};$	A1		
	335°	A1ft	4	Ft on (180 + "155") and no 'extras' in the given interval.
(d)	Translation	B1		'Translation'/'translate(d)'
	$\begin{bmatrix} 20 \\ 0 \end{bmatrix}$	B1	2	Accept equivalent in words provided linked to 'translation/move/shift' (Note: B0B1 is possible)
(e)	$f(x) = \tan 4x$	B1	1	For tan 4 <i>x</i>
	Total		13	
8(a)	$\log_a n = \log_a 3(2n-1)$	M1		OE Log law used PI by next line
	$\Rightarrow n = 3(2n-1)$	m1		OE, but must not have any logs.
	$\Rightarrow 3 = 5n \Rightarrow n = \frac{3}{5}$	A1	3	
(b)(i)	$\Rightarrow 3 = 5n \Rightarrow n = \frac{3}{5}$ $\log_a x = 3 \Rightarrow x = a^3$	B1	1	
	$\log_a y - \log_a 2^3 = 4$	M1		$3\log 2 = \log 2^3$ seen or used any time in (ii)
	$\log_a \frac{y}{2^3} = 4 \begin{cases} xy = a^7 \times a^{\left(\frac{3\log_a 2}{a}\right)} \\ \text{or} \\ y = a^4 \times a^{\left(\frac{3\log_a 2}{a}\right)} \end{cases}$	M1		Correct method leading to an equation involving <i>y</i> (or <i>xy</i>) and a log but not involving + or –
	$y = a^4 \times a^{\left(\frac{\log_a 2}{a^2}\right)}$			
	$\frac{y}{2^3} = a^4$ $\begin{cases} xy = a^7 \times 2^3 \\ \text{or} \\ y = a^4 \times 2^3 \end{cases}$ $by = a^3 \times 8a^4 \text{ or } 8a^7$	ml		Correct method to eliminate ALL logs e.g. using $\log_a N = k \Rightarrow N = a^k$
	$y = a^4 \times 2^3$			or using $a^{\log_a c} = c$
	$by = a^3 \times 8a^4 \text{ or } 8a^7$	A1	4	
	Total		8	
	TOTAL		75	