General Certificate of Education June 2008 Advanced Subsidiary Examination

MATHEMATICS Unit Pure Core 1

Thursday 15 May 2008 9.00 am to 10.30 am

For this paper you must have:

• an 8-page answer book

• the blue AQA booklet of formulae and statistical tables.

You must **not** use a calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MPC1.
- Answer **all** questions.
- Show all necessary working; otherwise marks for method may be lost.
- The use of calculators (scientific and graphics) is **not** permitted.

Information

- The maximum mark for this paper is 75.
- The marks for questions are shown in brackets.

Advice

• Unless stated otherwise, you may quote formulae, without proof, from the booklet.

MPC1

Answer all questions.

1 The straight line L has equation y = 3x - 1 and the curve C has equation

$$y = (x+3)(x-1)$$

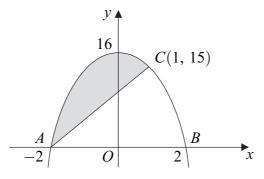
- (a) Sketch on the same axes the line *L* and the curve *C*, showing the values of the intercepts on the *x*-axis and the *y*-axis. (5 marks)
- (b) Show that the x-coordinates of the points of intersection of L and C satisfy the equation $x^2 x 2 = 0$. (2 marks)
- (c) Hence find the coordinates of the points of intersection of L and C. (4 marks)
- **2** It is given that $x = \sqrt{3}$ and $y = \sqrt{12}$.

Find, in the simplest form, the value of:

- (a) xy; (1 mark)
- (b) $\frac{y}{x}$; (2 marks)

(c)
$$(x+y)^2$$
. (3 marks)

- 3 Two numbers, x and y, are such that 3x + y = 9, where $x \ge 0$ and $y \ge 0$. It is given that $V = xy^2$.
 - (a) Show that $V = 81x 54x^2 + 9x^3$. (2 marks)


(b) (i) Show that
$$\frac{dV}{dx} = k(x^2 - 4x + 3)$$
, and state the value of the integer k. (4 marks)

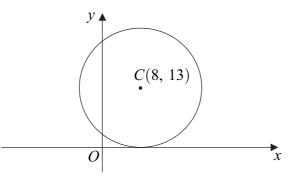
- (ii) Hence find the two values of x for which $\frac{dV}{dx} = 0$. (2 marks)
- (c) Find $\frac{d^2 V}{dx^2}$. (2 marks)

(d) (i) Find the value of
$$\frac{d^2 V}{dx^2}$$
 for each of the two values of x found in part (b)(ii). (1 mark)

- (ii) Hence determine the value of x for which V has a maximum value. (1 mark)
- (iii) Find the maximum value of V. (1 mark)

- Express $x^2 3x + 4$ in the form $(x p)^2 + q$, where p and q are rational numbers. (a) 4 (2 marks)
 - Hence write down the minimum value of the expression $x^2 3x + 4$. (b) (1 mark)
 - Describe the geometrical transformation that maps the graph of $y = x^2$ onto the graph (c) of $y = x^2 - 3x + 4$. (3 marks)
- The curve with equation $y = 16 x^4$ is sketched below. 5

The points A(-2, 0), B(2, 0) and C(1, 15) lie on the curve.


(3 marks) (a) Find an equation of the straight line AC.

(b) (i) Find
$$\int_{-2}^{1} (16 - x^4) dx$$
. (5 marks)

- (ii) Hence calculate the area of the shaded region bounded by the curve and the line AC. (3 marks)
- The polynomial p(x) is given by $p(x) = x^3 + x^2 8x 12$. 6
 - Use the Remainder Theorem to find the remainder when p(x) is divided by x 1. (a) (2 marks)
 - (b) (i) Use the Factor Theorem to show that x + 2 is a factor of p(x). (2 marks)
 - (ii) Express p(x) as the product of linear factors. (3 marks)
 - The curve with equation $y = x^3 + x^2 8x 12$ passes through the point (0, k). (c) (i) State the value of *k*. (1 mark)
 - Sketch the graph of $y = x^3 + x^2 8x 12$, indicating the values of x where the (ii) curve touches or crosses the x-axis. (3 marks)

Turn over for the next question

7 The circle S has centre C(8, 13) and touches the x-axis, as shown in the diagram.

(a) Write down an equation for S, giving your answer in the form

$$(x-a)^2 + (y-b)^2 = r^2$$
 (2 marks)

- (b) The point P with coordinates (3, 1) lies on the circle.
 - (i) Find the gradient of the straight line passing through *P* and *C*. (1 mark)
 - (ii) Hence find an equation of the tangent to the circle S at the point P, giving your answer in the form ax + by = c, where a, b and c are integers. (4 marks)
 - (iii) The point Q also lies on the circle S, and the length of PQ is 10. Calculate the shortest distance from C to the chord PQ. (3 marks)
- 8 The quadratic equation $(k+1)x^2 + 4kx + 9 = 0$ has real roots.
 - (a) Show that $4k^2 9k 9 \ge 0$. (3 marks)
 - (b) Hence find the possible values of k. (4 marks)

END OF QUESTIONS