

## **General Certificate of Education**

## **Mathematics 6360**

## MPC1 Pure Core 1

# **Mark Scheme**

2007 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

#### COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

| М                       | mark is for method                                                 |     |                            |  |  |
|-------------------------|--------------------------------------------------------------------|-----|----------------------------|--|--|
| m or dM                 | mark is dependent on one or more M marks and is for method         |     |                            |  |  |
| А                       | mark is dependent on M or m marks and is for accuracy              |     |                            |  |  |
| В                       | mark is independent of M or m marks and is for method and accuracy |     |                            |  |  |
| Е                       | mark is for explanation                                            |     |                            |  |  |
| $\sqrt{100}$ or ft or F | follow through from previous                                       |     |                            |  |  |
|                         | incorrect result                                                   | MC  | mis-copy                   |  |  |
| CAO                     | correct answer only                                                | MR  | mis-read                   |  |  |
| CSO                     | correct solution only                                              | RA  | required accuracy          |  |  |
| AWFW                    | anything which falls within                                        | FW  | further work               |  |  |
| AWRT                    | anything which rounds to                                           | ISW | ignore subsequent work     |  |  |
| ACF                     | any correct form                                                   | FIW | from incorrect work        |  |  |
| AG                      | answer given                                                       | BOD | given benefit of doubt     |  |  |
| SC                      | special case                                                       | WR  | work replaced by candidate |  |  |
| OE                      | or equivalent                                                      | FB  | formulae book              |  |  |
| A2,1                    | 2 or 1 (or 0) accuracy marks                                       | NOS | not on scheme              |  |  |
| -x EE                   | deduct x marks for each error                                      | G   | graph                      |  |  |
| NMS                     | no method shown                                                    | с   | candidate                  |  |  |
| PI                      | possibly implied                                                   | sf  | significant figure(s)      |  |  |
| SCA                     | substantially correct approach                                     | dp  | decimal place(s)           |  |  |

### Key to mark scheme and abbreviations used in marking

### No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

June 07

| Q          | Solution                                                                                                                                                                   | Marks | Total | Comments                                                        |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-----------------------------------------------------------------|
| 1(a)(i)    | Gradient $AB = \frac{-1-5}{6-2}$ or $\frac{51}{2-6}$                                                                                                                       | M1    |       | $\pm \frac{6}{4}$ implies M1                                    |
|            | $=\frac{-6}{4}=-\frac{3}{2}$                                                                                                                                               | A1    | 2     | AG                                                              |
| (ii)       | $ \begin{cases} y-5\\ y+1 \end{cases} = -\frac{3}{2} \begin{cases} (x-2)\\ (x-6) \end{cases} $                                                                             | M1    |       | or $y = -\frac{3}{2}x + c$ and attempt to find <i>c</i>         |
|            | $\Rightarrow$ 3x + 2y = 16                                                                                                                                                 | A1    | 2     | OE; must have integer coefficients                              |
| (b)(i)     | Gradient of perpendicular = $\frac{2}{3}$                                                                                                                                  | M1    |       | or use of $m_1 m_2 = -1$                                        |
|            | $\Rightarrow y-5=\frac{2}{3}(x-2)$                                                                                                                                         | A1    | 2     | 3y - 2x = 11 (no misreads permitted)                            |
| (ii)       | Substitute $x = k$ , $y = 7$ into their (b)(i)                                                                                                                             | M1    |       | or grads $\frac{7-5}{k-2} \times \frac{-3}{2} = -1$             |
|            | $\Rightarrow 2 = \frac{2}{3}(k-2) \Rightarrow k = 5$                                                                                                                       | A1    | 2     | or Pythagoras $(k-2)^{2} = (k-6)^{2} + 8$                       |
|            | Total                                                                                                                                                                      |       | 8     |                                                                 |
| 2(a)       | $\frac{\sqrt{63}}{3} = \sqrt{7} \text{ or } \frac{3\sqrt{7}}{3}$ $\frac{14}{\sqrt{7}} = 2\sqrt{7} \text{ or } \frac{14\sqrt{7}}{7}$ $\Rightarrow \text{ sum } = 3\sqrt{7}$ | B1    |       | or $\frac{\left(\sqrt{7}\sqrt{63}+14\times3\right)}{3\sqrt{7}}$ |
|            | $\frac{14}{\sqrt{7}} = 2\sqrt{7}$ or $\frac{14\sqrt{7}}{7}$                                                                                                                | B1    |       | or $\frac{\sqrt{7}}{\sqrt{7}}$ ( ) M1                           |
|            | $\Rightarrow$ sum = $3\sqrt{7}$                                                                                                                                            | B1    | 3     | $\Rightarrow$ correct answer with all working<br>correct A2     |
| <b>(b)</b> | Multiply by $\frac{\sqrt{7}+2}{\sqrt{7}+2}$                                                                                                                                | M1    |       |                                                                 |
|            | Denominator = $7 - 4 = 3$                                                                                                                                                  | A1    |       |                                                                 |
|            | Numerator = $\left(\sqrt{7}\right)^2 + \sqrt{7} + 2\sqrt{7} + 2$                                                                                                           | m1    |       | multiplied out (allow one slip) $9 + 3$                         |
|            | Answer = $\sqrt{7} + 3$                                                                                                                                                    | A1    | 4     |                                                                 |
|            | Total                                                                                                                                                                      |       | 7     |                                                                 |

| IPC1 (con |                                                                                                 |       |       |                                                       |
|-----------|-------------------------------------------------------------------------------------------------|-------|-------|-------------------------------------------------------|
| Q         | Solution                                                                                        | Marks | Total | Comments                                              |
| 3(a)(i)   | $(x+5)^2$                                                                                       | B1    |       | p = 5                                                 |
|           | -6                                                                                              | B1    | 2     | q = -6                                                |
| (ii)      | $x_{\text{vertex}} = -5 (\text{or their } -p)$                                                  | B1√   |       | may differentiate but must have $x = -5$              |
| (11)      | $y_{\text{vertex}} = -6$ (or their q)                                                           | B1    | 2     | and $y = -6$ . Vertex $(-5, -6)$                      |
|           |                                                                                                 |       |       |                                                       |
| (iii)     | x = -5                                                                                          | B1    | 1     |                                                       |
| (iv)      | Translation (not shift, move etc)                                                               | E1    |       | and NO other transformation stated                    |
|           | through $\begin{bmatrix} -5\\ -6 \end{bmatrix}$ (or 5 left, 6 down)                             | M1    |       | either component correct                              |
|           |                                                                                                 | A1    | 3     | M1, A1 independent of E mark                          |
| (b)       | $x + 11 = x^2 + 10x + 19$                                                                       |       |       | quadratic with all terms on one side of               |
| (2)       |                                                                                                 |       |       | equation                                              |
|           | $\Rightarrow x^2 + 9x + 8 = 0$ or $y^2 - 13y + 30 = 0$                                          | M1    |       |                                                       |
|           | (x+8)(x+1) = 0 or $(y-3)(y-10) = 0$                                                             | m1    |       | attempt at formula (1 slip) or to factorise           |
|           | $ \begin{array}{c} x = -1 \\ y = 10 \end{array}  \begin{array}{c} x = -8 \\ y = 3 \end{array} $ | A1    |       | both x values correct                                 |
|           | y = 10 $y = 3$                                                                                  | A1    | 4     | both <i>y</i> values correct and linked               |
|           | Tatal                                                                                           |       | 12    | <b>SC</b> (-1, 10) B2, (-8, 3) B2 no working          |
| 4(a)(i)   | $\frac{1}{t^3 - 52t + 96}$                                                                      | M1    | 12    | one term correct                                      |
| .()(!)    | 1 521 70                                                                                        | Al    |       | another term correct                                  |
|           |                                                                                                 | A1    | 3     | all correct (no $+ c$ etc)                            |
| (ii)      | $3t^2 - 52$                                                                                     | M1    |       | ft one term correct                                   |
|           |                                                                                                 | A1√   | 2     | ft all "correct"                                      |
|           | dy                                                                                              |       |       | dv                                                    |
| (b)       | $\frac{\mathrm{d}y}{\mathrm{d}t} = 8 - 104 + 96$                                                | M1    |       | substitute $t = 2$ into their $\frac{dy}{dt}$         |
|           | $= 0 \Rightarrow$ stationary value                                                              | A1    |       | CSO; shown = $0 +$ statement                          |
|           | Substitute $t = 2$ into $\frac{d^2 y}{dt^2}$ (= -40)                                            | M1    |       | any appropriate test, e.g. $y'(1)$ and $y'(3)$        |
|           |                                                                                                 |       |       |                                                       |
|           | $\frac{d^2 y}{dt^2} < 0 \implies \max \text{ value}$                                            | A1    | 4     | all values (if stated) must be correct                |
|           |                                                                                                 |       |       |                                                       |
| (c)       | Substitute $t = 1$ into their $\frac{dy}{dt}$                                                   | M1    |       | must be their $\frac{dy}{dt}$ NOT $\frac{d^2y}{dt^2}$ |
|           | <u>u</u>                                                                                        |       | 2     |                                                       |
|           | Rate of change = $45 (cm s^{-1})$                                                               | A1√   | 2     | ft their $y'(1)$                                      |
|           | a hair a change dy                                                                              |       |       | dy                                                    |
| (d)       | Substitute $t = 3$ into their $\frac{dy}{dt}$                                                   | M1    |       | interpreting their value of $\frac{dy}{dt}$           |
|           | (27 - 156 + 96 = -33 < 0)                                                                       |       |       |                                                       |
|           | $\Rightarrow$ decreasing when $t = 3$                                                           | E1√   | 2     | allow increasing if their $\frac{dy}{dt} > 0$         |
|           | $\Rightarrow$ decreasing when $i = 5$                                                           | 21.   | -     | unow moreusing if then 1.                             |

| Q       | Solution                                                                    | Marks | Total | Comments                                                                                       |
|---------|-----------------------------------------------------------------------------|-------|-------|------------------------------------------------------------------------------------------------|
| 5(a)(i) | Centre $(-3, 2)$                                                            | M1    |       | $\pm 3$ or $\pm 2$                                                                             |
|         |                                                                             | A1    | 2     | correct                                                                                        |
| (ii)    | Radius = $5$                                                                | B1    | 1     | accept $\sqrt{25}$ but not $\pm\sqrt{25}$                                                      |
| (b)(i)  | $3^2 + \left(-4\right)^2 = 9 + 16 = 25$                                     |       |       |                                                                                                |
|         | $\Rightarrow$ N lies on circle                                              | B1    | 1     | must have $9 + 16 = 25$ or a statement                                                         |
| (ii)    | <b>↓</b> <i>Y</i>                                                           |       |       |                                                                                                |
|         |                                                                             | M1    |       | must draw axes;                                                                                |
|         | $( C \bullet ) $                                                            |       |       | ft their centre in correct quadrant                                                            |
|         |                                                                             | A1    | 2     | correct (reasonable freehand circle enclosing origin)                                          |
| (iii)   | Attempt at gradient of CN                                                   | M1    |       | withhold if subsequently finds tangent                                                         |
|         | grad $CN = -\frac{4}{3}$                                                    | A1    |       | CSO                                                                                            |
|         | $y = -\frac{4}{3}x - 2$ (or equivalent)                                     | A1√   | 3     | ft their grad CN                                                                               |
| (c)(i)  | $P(2,6)$ Hence $PC^2 = 5^2 + 4^2$                                           | M1    |       | "their" $PC^2$                                                                                 |
|         | $\Rightarrow PC = \sqrt{41}$                                                | A1    | 2     |                                                                                                |
| (ii)    | Use of Pythagoras correctly                                                 | M1    |       |                                                                                                |
|         | $PT^2 = PC^2 - r^2 = 41 - 25$ ,<br>where T is a point of contact of tangent | A1√   |       | ft their $PC^2$ and $r^2$                                                                      |
|         | $\Rightarrow PT = 4$                                                        | A1    | 3     | Alternative                                                                                    |
|         |                                                                             |       |       | sketch with vertical tangent M1<br>showing that tangent touches circle at<br>point $(2, 2)$ A1 |
|         | Total                                                                       |       | 14    | hence $PT = 4$ A1                                                                              |

| MPC1 | (cont) |
|------|--------|
|------|--------|

| Q       | Solution                                                    | Marks | Total | Comments                                                                           |
|---------|-------------------------------------------------------------|-------|-------|------------------------------------------------------------------------------------|
| 6(a)(i) | f(1) = 1 + 4 - 5                                            | M1    |       | must find $f(1)$ NOT long division                                                 |
|         | $\Rightarrow$ f(1) = 0 $\Rightarrow$ (x-1) is factor        | A1    | 2     | shown $= 0$ plus a statement                                                       |
| (ii)    | Attempt at $x^2 + x + 5$                                    | M1    |       | long division leading to $x^2 \pm x +$ or equating coefficients                    |
|         | $f(x) = (x-1)(x^2 + x + 5)$                                 | A1    | 2     | p = 1, q = 5 by inspection scores B1, B1                                           |
| (iii)   | (x =) 1 is real root                                        | B1    |       |                                                                                    |
|         | Consider $b^2 - 4ac$ for their $x^2 + x + 5$                | M1    |       | not the cubic!                                                                     |
|         | $b^2 - 4ac = 1^2 - 4 \times 5 = -19 < 0$                    |       |       |                                                                                    |
|         | Hence no real roots (or only real root is 1)                | A1    | 3     | CSO; all values correct plus a statement                                           |
|         | r <sup>4</sup>                                              | M1    |       | one term correct unsimplified                                                      |
| (b)(i)  | $\int \dots dx = \frac{x^4}{4} + 2x^2 - 5x (+c)$            | A1    |       | second term correct unsimplified                                                   |
|         | •                                                           | A1    | 3     | all correct unsimplified                                                           |
|         |                                                             |       |       | correct use of limits 1 and 2;                                                     |
| (ii)    | $[4+8-10] - \left\lfloor \frac{1}{4} + 2 - 5 \right\rfloor$ | M1    |       | F(2) - F(1) attempted                                                              |
|         | $=4\frac{3}{4}$                                             | A 1   |       |                                                                                    |
|         | =4-4                                                        | A1    |       |                                                                                    |
|         | Area of $\Delta = \frac{1}{2} \times 11 = 5\frac{1}{2}$     | B1    |       | correct unsimplified                                                               |
|         | $\Rightarrow$ shaded area = $5\frac{1}{2} - 4\frac{3}{4}$   |       |       | combined integral of $7x - 6 - x^3$ scores<br>M1 for limits correctly used then    |
|         | $=\frac{3}{4}$                                              | A1    | 4     | A3 correct answer with all working correct                                         |
|         | Total                                                       |       | 14    |                                                                                    |
| 7(a)    | $b^2 - 4ac = 4 - 4(k-1)(2k-3)$                              | M1    |       | (or seen in formula) condone one slip                                              |
|         | Real roots when $b^2 - 4ac \ge 0$                           | E1    |       | must involve $f(k) \ge 0$ (usually M1 must be earned)                              |
|         | $4-4\left(2k^2-5k+3\right) \ge 0$                           |       |       |                                                                                    |
|         | $\Rightarrow -2k^2 + 5k - 3 + 1 \ge 0$                      |       |       | at least one step of working justifying $\leq 0$                                   |
|         | $\Rightarrow 2k^2 - 5k + 2 \leqslant 0$                     | A1    | 3     | AG                                                                                 |
| (b)(i)  | (2k-1)(k-2)                                                 | B1    | 1     |                                                                                    |
| (ii)    | (Critical values) $\frac{1}{2}$ and 2                       | B1√   |       | ft their factors or correct values seen on diagram, sketch or inequality or stated |
|         | + - +                                                       | M1    |       | use of sketch (sign diagram                                                        |
|         | $\frac{1}{2}$ 2                                             | 1011  |       | use of sketch / sign diagram                                                       |
|         | $\Rightarrow 0.5 \leq k \leq 2$                             | A1    | 3     | M1A0 for $0.5 < k < 2$ or $k \ge 0.5$ , $k \le 2$                                  |
|         | Total<br>TOTAL                                              |       | 7     |                                                                                    |
|         | TOTAL                                                       |       | 75    |                                                                                    |