General Certificate of Education

Mathematics 6360

MPC1 Pure Core 1

Mark Scheme
2010 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT
AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
\checkmark or ft or F	follow through from previous incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
$-x$ EE	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline 1(a)
(b) \& \[
\begin{aligned}
\& \left.\begin{array}{rl}
\mathrm{p}(-3) \& =(-3)^{3}-13(-3)-12 \\
\& =-27+39-12 \\
\& =0 \quad \Rightarrow x+3 \text { is factor }
\end{array}\right\} \\
\& \begin{aligned}
\&(x+3)\left(x^{2}+b x+c\right) \\
\&\left(x^{2}-3 x-4\right) \text { obtained } \\
\&(x+3)(x-4)(x+1)
\end{aligned}
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 \\
A1
\end{tabular} \& 2 \& \begin{tabular}{l}
must attempt \(\mathrm{p}(-3)\) NOT long division \\
shown \(=0\) plus statement \\
Full long division, comparing coefficients or by inspection either \(b=-3\) or \(c=-4\) or M1A1 for either \((x-4)\) or \((x+1)\) clearly found using factor theorem CSO; must be seen as a product of 3 factors \\
NMS full marks for correct product
\[
\begin{aligned}
\& \text { SC B1 for }(x+3)(x-4)() \\
\& \quad \text { or }(x+3)(x+1)() \\
\& \quad \text { or }(x+3)(x+4)(x-1) \mathrm{NMS}
\end{aligned}
\]
\end{tabular} \\
\hline \& Total \& \& 5 \& \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
2(a)(i) \\
(ii)
\end{tabular}} \& \[
\begin{aligned}
\operatorname{grad} A B \& =\frac{7-3}{3-1} \\
\& =2^{(\text {must simplify } 4 / 2)}
\end{aligned}
\] \& M1
A1 \& 2 \& \(\frac{\Delta y}{\Delta x}\) correct expression, possibly implied \\
\hline \& \begin{tabular}{l}
\(\operatorname{grad} B C=\frac{7-9}{3+1}=-\frac{2}{4}\) \\
\(\operatorname{grad} A B \times \operatorname{grad} B C=-1\) \\
\(\Rightarrow \angle A B C=90^{\circ}\) or \(A B \& B C\) perpendicular
\end{tabular} \& M1

A1 \& 2 \& | Condone one slip |
| :--- |
| NOT Pythagoras or cosine rule etc convincingly proved plus statement SC B1 for-1/(their grad $A B$) or statement that $m_{1} m_{2}=-1$ for perpendicular lines if M0 scored |

\hline \multirow[t]{4}{*}{| (b)(i) |
| :--- |
| (ii) |
| (iii) |} \& \[

\left\{$$
\begin{array}{ll}
M(0,6) & \\
\left(A B^{2}=\right) & (3-1)^{2}+(7-3)^{2} \\
\left(B C^{2}=\right) & (3+1)^{2}+(7-9)^{2}
\end{array}
$$\right\}
\] \& B2

M1 \& 2 \& B1 + B1 each coordinate correct either expression correct, simplified or unsimplified

\hline \& $$
\left.\begin{array}{rl}
A B^{2}=2^{2}+4^{2} & \text { or } B C^{2}=4^{2}+2^{2} \\
& \text { or } \sqrt{20} \text { found as a length } \\
A B^{2}=B C^{2} \Rightarrow A B=B C \\
\text { or } A B=\sqrt{20} \text { and } B C=\sqrt{20}
\end{array}\right\}
$$ \& A1

A1 \& 3 \& Must see either $A B^{2}=.$. , or $B C^{2}=\ldots$,

\hline \& $$
\begin{aligned}
\operatorname{grad} B M=\frac{7-6}{3-0} & \\
& \text { or }-1 /(\operatorname{grad} A C) \text { attempted } \\
& =\frac{1}{3}
\end{aligned}
$$ \& M1

A1 \& \& | ft their M coordinates |
| :--- |
| correct gradient of line of symmetry |

\hline \& $B M$ has equation $y=\frac{1}{3} x+6$ \& A1 \& 3 \& CSO, any correct form

\hline \& Total \& \& 12 \&

\hline
\end{tabular}

	Solution			
Q	Solution	Marks	Total	Comments
3(a)(i)	$\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{4 t^{3}}{8}-4 t+4$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	one term correct another term correct all correct (no $+c$ etc) unsimplified
(ii)	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}=\frac{12 t^{2}}{8}-4$	M1		ft one term "correct"
(b)		A1	2	correct unsimplified (penalise inclusion of $+c$ once only in question)
	$t=2 ; \frac{\mathrm{d} y}{\mathrm{~d} t}=4-8+4$	M1		Substitute $t=2$ into their $\frac{\mathrm{d} y}{\mathrm{~d} t}$
(c)(i)	$\frac{\mathrm{d} y}{\mathrm{~d} t}=0 \Rightarrow \text { stationary value }$	A1		CSO; shown $=0$ plus statement
	$t=2 ; \frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}=6-4=2$	M1		Sub $t=2$ into their $\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}$
	$\Rightarrow y$ has MINIMUM value	A1	4	CSO
	$t=1 ; \frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{1}{2}-4+4$	M1		Substitute $t=1$ into their $\frac{\mathrm{d} y}{\mathrm{~d} t}$
(ii)	$=\frac{1}{2}$	A1	2	OE; CSO
				NMS full marks if $\frac{\mathrm{d} y}{\mathrm{~d} t}$ correct
	$\frac{\mathrm{d} y}{\mathrm{~d} t}>0 \Rightarrow$ (depth is) INCREASING	E1〕	1	allow decreasing if states that their $\frac{\mathrm{d} y}{\mathrm{~d} t}<0$ Reason must be given not just the word increasing or decreasing
	Total		12	
4(a)	$\sqrt{50}=5 \sqrt{2} ; \quad \sqrt{18}=3 \sqrt{2} ; \quad \sqrt{8}=2 \sqrt{2}$ At least two of these correct	M1	3	$\text { or } \times \frac{\sqrt{8}}{\sqrt{8}} \text { or }\left(\times \frac{\sqrt{2}}{\sqrt{2}}\right) \text { or } \sqrt{\frac{25}{4}}+\sqrt{\frac{9}{4}}$
(b)	$\frac{5 \sqrt{2}+3 \sqrt{2}}{2 \sqrt{2}}$	A1		any correct expression all in terms of $\sqrt{2}$ or with denominator of 8,4 or 2 $\text { simplifying numerator eg } \frac{\sqrt{400}+\sqrt{144}}{8}$
	Answer $=4$	A1		CSO
	$\frac{(2 \sqrt{7}-1)(2 \sqrt{7}-5)}{(2 \sqrt{7}+5)(2 \sqrt{7}-5)}$	M1		OE
	$\text { numerator }=4 \times 7-2 \sqrt{7}-10 \sqrt{7}+5$	m1		expanding numerator (condone one error or omission) (seen as denominator)
	Answer $=11-4 \sqrt{7}$		4	
	Total		7	

Q	Solution	Marks	Total	Comments
5(a)	$\begin{aligned} & x^{2}-8 x+15+2 \\ & \text { their }(x-4)^{2} \\ & =(x-4)^{2}+ \end{aligned}$	B1		Terms in x must be collected, PI
		M1		$\mathrm{ft}(x-p)^{2}$ for their quadratic
		A1	3	ISW for stating $p=-4$ if correct expression seen
(b)(i)		M1		\cup shape in any quadrant (generous)
		A1		correct with min at $(4,1)$ stated or 4 and 1 marked on axes condone within first quadrant only
		B1	3	crosses y-axis at $(0,17)$ stated or 17 marked on y-axis
(ii)	$y=k \quad y=1$	M1		$y=$ constant
		A1	2	Condone $y=0 x+1$
(c)	Translation (not shift, move etc)	E1		and no other transformation
	with vector $\left[\begin{array}{l}4 \\ 1\end{array}\right]$	M1		One component correct or ft either their p or q
		A1	3	CSO; condone 4 across, 1 up; or two separate vectors etc
	Total		11	

MPC1 (cont)

Q	Solution	Marks	Total	Comments
7(a)(i)	$\begin{gathered} x= \pm 2 \text { or } y= \pm 6 \text { or }(x-2)^{2}+(y+6)^{2} \\ C(2,-6) \end{gathered}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	correct
(ii)	$\begin{aligned} &\left(r^{2}=\right) 4+36-15 \\ & \Rightarrow r=5 \end{aligned}$	M1 A1	2	$\begin{aligned} & (\mathrm{RHS}=) \text { their }(-2)^{2}+\text { their }(6)^{2}-15 \\ & \text { Not } \pm 5 \text { or } \sqrt{25} \end{aligned}$
(b)	explaining why $\left\|y_{c}\right\|>r ; 6>5$	E1		Comparison of y_{C} and r, eg $-6+5=-1$ or indicated on diagram
	full convincing argument, but must have correct y_{C} and r	E1	2	Eg "highest point is at $y=-1$ " scores E2 E1: showing no real solutions when $y=0$ + E1 stating centre or any point below x axis
(c)(i)	$\left(P C^{2}=\right)(5-2)^{2}+(k+6)^{2}$			ft their C coords
	$=9+k^{2}+12 k+36$	M1		and attempt to multiply out
	$P C^{2}=k^{2}+12 k+45$	A1	2	AG CSO (must see $P C^{2}=$ at least once)
(ii)	$\left.\begin{array}{l} P C>r \Rightarrow P C^{2}>25 \\ \Rightarrow k^{2}+12 k+20>0 \end{array}\right\}$	B1	1	AG \quad Condone $\left.\begin{array}{l}k^{2}+12 k+45>25 \\ \Rightarrow k^{2}+12 k+20>0\end{array}\right\}$
(iii)	$(k+2)(k+10)$	M1		Correct factors or correct use of formula
	$k=-2, k=-10$ are critical values	A1		May score M1, A1 for correct critical values seen as part of incorrect final answer with or without working.
	Use of sketch or sign diagram:			
		M1		If previous A1 earned, sign diagram or sketch must be correct for M1, otherwise M1 may be earned for an attempt at the sketch or sign diagram using their critical values.
	$\Rightarrow k>-2, k<-10$	A1	4	$k \geqslant-2, k \leqslant-10$ loses final A mark
	Condone $k>-2$ OR $k<-10$ for full marks but not AND instead of OR Take final line as their answer			Answer only of $k>-2, k>-10$ etc scores M1, A1, M0 since the critical values are evident. Answer only of $k>2, k<-10$ etc scores M0, M0 since the critical values are not both correct.
	Total		13	
	TOTAL		75	

XMCA2

| XMCA2 (cont) | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Q | Solution | Marks | Total | Comments |
| (ii) | | | | Modulus graph |

XMCA2 (cont)

Q	Solution	Marks	Total	Comments
5	$V=\pi \int_{0}^{1} \cos \left(x^{2}\right) \mathrm{d} x$	M1		$\int \cos \left(x^{2}\right) \mathrm{d} x$ Correct limits. (Condone k, or missing π until the final mark)

XMCA2 (cont)

Q	Solution	Marks	Total	Comments
6(a)(i)		B2,1,0	2	B2 correct sketch-no part curve in $2^{\text {nd }}, 3^{\text {rd }}$ or $4^{\text {th }}$ quadrants and 'In3' (B1 for general shape in 1 quadrant, ignore other quadrants; $\ln 3$ not requirec
(ii)	Range of $\mathrm{f}: \mathrm{f}(\mathrm{x}) \geq \ln 3$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	$\geq \ln 3$ or $>\ln 3$ or $f \geq \ln 3$ Allow y for $f(x)$.
(b)(i)	$\begin{aligned} y=\mathrm{f}^{-1}(x) & \Rightarrow \mathrm{f}(y)=x \\ & \Rightarrow \ln (2 y+3)=x \\ & \Rightarrow 2 y+3=\mathrm{e}^{x} \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~m} 1 \end{aligned}$		$x \Leftrightarrow y$ at any stage Use of $\ln m=N \Rightarrow m=e$
	$f^{-1}(x)=\frac{e^{x}-3}{2}$	A1	3	ACF-Accept y in place of $\mathrm{f}^{-1}(x)$
(ii)	Domain of f^{-1} is: $x \geq \ln 3$	B1F	1	ft on (a)(ii) for RHS
(c)	$\frac{\mathrm{d}}{\mathrm{~d} x}\left[(\ln (2 x+3)]=\frac{1}{(2 x+3)} \times 2\right.$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	1/(2x+3)
(d)(i)	P, the pt of intersection of $y=\mathrm{f}(x)$ and $y=\mathrm{f}^{-1}(x)$, must lie on the line $y=x$; so P has coordinates (α, α). $\mathrm{f}(\alpha)=\alpha$	M1; M1		OE eg $\mathrm{f}^{-1}(\alpha)=\alpha$
	$\ln (2 \alpha+3)=\alpha \Rightarrow 2 \alpha+3=\mathrm{e}^{\alpha}$	A1	3	A.G. CSO

(ii)	$\begin{aligned} & \frac{\mathrm{d}}{\mathrm{~d} x}\left[\mathrm{f}^{-1}(x)\right]=\frac{1}{2} \mathrm{e}^{x} \\ & \text { Product of gradients }=\frac{\mathrm{e}^{x}}{2 x+3} \end{aligned}$ At $P(\alpha, \alpha)$, the product of the gradients is $\frac{\mathrm{e}^{\alpha}}{2 \alpha+3}=\frac{2 \alpha+3}{2 \alpha+3}=1$	B1F B1	2	$\frac{\mathrm{e}^{\alpha}-3}{2}=\alpha \Rightarrow \mathrm{e}^{\alpha}=2 \alpha+3$ AG CSO
	Total		15	

\begin{tabular}{|c|c|c|c|c|}
\hline (ii) \& \begin{tabular}{l}
Area of shaded region above \(x\)-axis
\[
\begin{aligned}
\& =\int_{0}^{k} 6 \mathrm{e}^{-2 x} \mathrm{~d} x \\
\& =\left[-3 e^{-2 x}\right]_{0}^{k}=-3 \mathrm{e}^{-2 k}-(-3)
\end{aligned}
\] \\
Total area of shaded region
\[
\begin{aligned}
\& =3 k-3 e^{-2 k}+3=4 \\
\& 3 k-1-3 e^{-2 k}=0 \Rightarrow(3 k-1) e^{2 k}-3=0 \\
\& \text { Let } f(k)=(3 k-1) e^{2 k}-3 \\
\& f(0.6)=0.8 e^{1.2}-3=-0.3(4 . .)<0 \\
\& f(0.7)=1.1 e^{1.4}-3=1 .(46 . .)>0
\end{aligned}
\] \\
Since change of sign (and f continuous), \(0.6<k<0.7\)
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
M1 \\
A1 \\
M1 \\
A1
\end{tabular} \& 6

2 \& | $F(k)-F(0)$ following an integration. ACF |
| :--- |
| AG CSO |
| Both $f(0.6)$ and $f(0.7)$ [or better] attempted |
| AG Note: Must see the explicit reference to 0.6 and 0.7 otherwise A |

\hline \& Total \& \& 12 \&

\hline
\end{tabular}

XMCA2 (cont)

(ii)	$\begin{aligned} & \overrightarrow{B P}=\left[\begin{array}{c} 2+p \\ 2 p \\ p \end{array}\right]-\left[\begin{array}{l} 5 \\ 1 \\ 4 \end{array}\right]=\left[\begin{array}{c} p-3 \\ 2 p-1 \\ p-4 \end{array}\right] \\ & \overrightarrow{B P} \bullet\left[\begin{array}{l} 1 \\ 2 \\ 1 \end{array}\right]=0 ; 6 p=9 \Rightarrow p=1.5 \end{aligned}$ $P(3.5,3,1.5)$ is mid point of $B C$ $\begin{aligned} & \frac{x_{C}+5}{2}=3.5 \frac{y_{C}+1}{2}=3 \frac{z_{C}+4}{2}=1.5 \\ & \Rightarrow C(2,5,-1) \end{aligned}$	M1 A1 M1 A1 A1 M1 A1	2	Condone one slip " $\pm \overrightarrow{B P} \bullet$ direction vector of $l=0$ ". Condone one slip Condone written as a column vector. Award equivalent marks for alternativ valid methods.
	Total		14	

XMCA2 (cont)

Q	Solution	Marks	Total	Comments
11(a)(b)	$\begin{aligned} & \sin (2 x+x)=\sin 2 x \cos x+\cos 2 x \sin x \\ & \quad=[2 \sin x \cos x] \cos x+\left[1-2 \sin ^{2} x\right] \sin x \\ & \quad=2 \sin x\left(1-\sin ^{2} x\right)+\left(1-2 \sin ^{2} x\right) \sin x \\ & \quad=2 \sin x-2 \sin ^{3} x-\sin x-2 \sin ^{3} x \\ & \sin 3 x=3 \sin x-4 \sin ^{3} x . \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { B1;B1 } \\ & \text { m1 } \\ & \text { A1 } \end{aligned}$	5	B1 for each [...]. Accept alternative correct forms for $\cos 2 x$ All in terms of $\sin x$ cso
	$\begin{aligned} & 2 \sin 3 x=1-\cos 2 x \\ & 2\left(3 \sin x-4 \sin ^{3} x\right)=1-\cos 2 x \\ & 2\left(3 \sin x-4 \sin ^{3} x\right)=1-\left(1-2 \sin ^{2} x\right) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$		Using (a) Equation in $\sin x$
	$\begin{array}{ll} 2 \sin x\left(3-\sin x-4 \sin ^{2} x\right)=0 \\ {[2 \sin x=0]} & (3-4 \sin x)(1+\sin x)=0 \\ & \\ \sin x=0 ; & x=180^{\circ} \\ \sin x=0.75 ; & x=48.6^{\circ}, 131.4^{\circ} \\ & \\ \sin x=-1 ; & x=270^{\circ} \end{array}$	m1 B1 A1 A1	7	Factorising/solving quadratic in sin Ignore solns outside $0^{\circ}<x<360^{\circ}$ throughout
	Total		12	
12(a)(i)	$\begin{aligned} & u=x \text { and } \frac{\mathrm{d} v}{\mathrm{~d} x}=\sec ^{2} x \\ & \frac{\mathrm{~d} u}{\mathrm{~d} x}=1 \text { and } v=\tan x \end{aligned}$	M1 A1	4	Attempt to use parts formula in the 'correct direction' PI
	$\ldots . .=x \tan x-\int \tan x \mathrm{~d} x$	A1		
(ii)	$=x \tan x-\ln (\sec x) \quad(+c)$	A1		OE CSO (Condone absence of $+c)$
	$\int x \tan ^{2} x \mathrm{~d} x=\int x\left(\sec ^{2} x-1\right) \mathrm{d} x$	M1		Use of identity $1+\tan ^{2} x=\sec ^{2} x$

