Mechanics 1 - Revision notes

1. Kinematics in one and two dimensions

EQUATIONS FOR CONSTANT ACCELERATION ARE NOT GIVEN - Learn Them!

- Always list the variables you have - write down the equation you intend to use.
- Sketch graphs - essential for multi-stage journeys
- Retardation / deceleration - don't forget the negative sign

Distance/ Displacement - time graph

GRADIENT $=$ VELOCITY
Straight line - constant velocity - zero acceleration

Travels $12 m$ from a point X, turns round and travels 15 m in the opposite direction finishing $3 m$ behind X.

Velocity - Time graph

MOST USEFUL GRAPH TO SKETCH

GRADIENT = ACCELERATION
Straight line - constant acceleration

DISPLACEMENT is represented by the area under the graph

- the body is a point mass to gravity
- air resistance can be ignored
- the motion of a body is in a vertical line
- the acceleration due to gravity is constant

EXAMPLE : A ball is thrown vertically upwards from ground level with a velocity of $28 \mathrm{~ms}^{-1}$
a) What was its maximum height above the ground?

$$
\mathrm{u}=28 \mathrm{~ms}^{-1}
$$

$\mathrm{a}=-9.8 \mathrm{~ms}^{-2}$
$\mathrm{v}=0$ (top of balls flight)

$$
s=?
$$

$$
\begin{aligned}
& v^{2}=u^{2}+2 a s \\
& 0=28^{2}+2 \times(-9 \cdot 8) s \\
& s=40 m
\end{aligned}
$$

b) How long did it take to return to the ground ?
$\mathrm{u}=28 \mathrm{~ms}^{-1}$
$\mathrm{a}=-9.8 \mathrm{~ms}^{-2}$
$\mathrm{~s}=0$
$s=u t+\frac{1}{2} a t^{2}$
$0=28 t+\frac{1}{2}(-9 \cdot 8) \times t^{2}$
$0=t(28-4.9 t)$
$t=0$ or $t=5.71$
$t=0$: time at which ball thrown
Clearly identify $\mathrm{t}=5.71 \mathrm{~s}$ as the final answer

VECTORS

- Vectors have both magnitude and direction $A=\left[\begin{array}{c}4 \\ -2\end{array}\right] \quad$ or $\quad A=4 i-2 j$

Magnitude : $|\mathbf{A}|=\sqrt{2^{2}+4^{2}}$

$$
\sqrt{20}
$$

Magnitude $=$ Length

- SPEED = magnitude of the velocity vector

- DIRECTION OF TRAVEL = direction of the velocity vector
- Unit Vector : a vector with magnitude = 1

Vector equations - for constant acceleration the 5 equations involving, displacement, velocity etc can be used

- If asked to write an equation in terms of t for displacement/ velocity etc - simplify your equation as far as possible by collecting the i terms and j terms
e.g $\quad \mathbf{u}=2 \mathrm{i}+5 \mathrm{j} \quad \mathbf{a}=4 \mathrm{i}-8 \mathrm{j}$

Displacement $\mathbf{r}=\mathbf{u t}+1 / 2 \mathbf{a t}^{2}$

$$
\begin{aligned}
\mathbf{R} & =(2 i+5 j) t+1 / 2(4 i-8 j) t^{2} \\
& =\left(2 t+2 t^{2}\right) i+\left(5 t-4 t^{2}\right) j
\end{aligned}
$$

Example

Two particles A and B are moving in a plane with the following properties A is at point (0,3), has velocity ($2 \mathrm{i}+\mathrm{j}$) ms^{-1} and acceleration $(\mathrm{i}-2 \mathrm{j}) \mathrm{ms}^{-2}$ B is at point $(2,1)$, has velocity ($3 \mathrm{i}-\mathrm{j}$) ms^{-1} and acceleration (2i) ms^{-2}
Find the vector $\overrightarrow{A B}$ six seconds later, and the distance between the particles at that time
Displacement : in vector form \boldsymbol{r} is used instead of \boldsymbol{s}
Using
$r=u t+\frac{1}{2} a t^{2}$
For A :

$$
\begin{aligned}
\mathbf{r} & =(2 i+j) \times 6+1 / 2(i-2 j) \times 36 \\
& =30 i-30 j
\end{aligned}
$$

As A started at $(0,3)$ six seconds later $\overrightarrow{O A}=30 i-27 j$

$$
\ldots \overrightarrow{O B}=56 i-5 j
$$

This gives $\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}=26 i+22 j$
Distance $A B=$ magnitude of $\overrightarrow{A B}$

$$
\begin{aligned}
& =\sqrt{26^{2}+22^{2}} \\
& =34.1 \mathrm{~m}
\end{aligned}
$$

- Forces can be represented as vectors
- If forces are in equilibrium then the resultant (sum of vectors) $=0$

All \mathbf{i} components sum to zero and all \mathbf{j} components sum to zero.
If drawn the forces will form a closed polygon

3 forces in equilibrium

The system is in equilibrium.
Find T_{1} and T_{2}

Method 1 - Triangle of forces

Sketching the 3 forces gives a triangle.

We can now use the sine rule to find T_{1} and T_{2}.

$$
\begin{aligned}
& \frac{\mathrm{T}_{1}}{\sin 52}=\frac{\mathrm{T}_{2}}{\sin 63}=\frac{12 \mathrm{~g}}{\sin 65} \\
& \mathrm{~T}_{1}=102 \mathrm{~N} \\
& \mathrm{~T}_{2}=116 \mathrm{~N}
\end{aligned}
$$

Method 2 - Lami's theorem

For questions involving river crossings and current you may need to use the cosine rule as well as the sine rule to calculate missing lengths and angles

Cosine Rule

$a^{2}=b^{2}+c^{2}-2 b c \operatorname{Cos} A$

LAMI'S THEOREM

For any set of three forces P, Q and R in equilibrium

$$
\frac{P}{\sin \alpha}=\frac{Q}{\sin \beta}=\frac{R}{\sin \gamma}
$$

More than 3 forces in Equilibrium - Resolve the forces

Example

Find the resultant of the following system and state the force needed to maintain equilibrium.

$$
\begin{aligned}
& \text { Horizontally } \\
& \text { Resultant (i) }=-12 \sin 40^{\circ}+10 \cos 25^{\circ}-6 \cos 65^{\circ} \\
& =-1.186
\end{aligned}
$$

Vertically

Resultant $(\mathrm{j})=12 \cos 40^{\circ}+10 \sin 25^{\circ}-6 \sin 65^{\circ}-5$

$$
=2.981
$$

Resultant $=\mathbf{- 1 . 1 8 6 i} \mathbf{+ 2 . 9 8 1} \mathbf{j}$
Force needed to maintain equilibrium $=1.186 \mathbf{i}-2.981 j$
Force of 3.21 N with direction -68.3° to the positive x -direction

TYPES OF FORCE

- ALWAYS DRAW A DIAGRAM SHOWING ALL FORCES (with magnitude if known)

Weight : mass x 9.8 (gravity)
Reaction (normal reaction) : at right angles to the plane of contact
SYSTEMS in Equilibrium - resolving in the vertically (or in the j direction)
Vertical or j-direction

5 g

Tension / Thrust - pulling or pushing force on the body

Friction

- Always - acts in a direction opposite to that in which the object is moving or tending to move
- Smooth contact - friction is small enough to be ignored
- Maximum Friction (limiting friction) - object is moving or just on the point of moving : $F=\mu R \quad$ where μ is the coefficient of friction
- $F<\mu R$ body not moving

IN EQUILIBRIUM - resolving horizontally or in the i direction

- For questions looking for the minimum and maximum force needed to for a block on a slope to move look at :
A) $\quad \mathbf{P}$ is too small - the block is about to slide down the slope (limiting friction)

Resolving in the idirection
$F+P \cos 30-m g \sin 30=0$
Resolving in the j direction
$R-P \sin 30-m g \cos 30=0$
B) $\quad \mathbf{P}$ is too large - the block is on the verge of sliding up the slope

Resolving in the idirection

$P \cos 30-F-m g \sin 30=0$
Resolving in the j direction
$R-P \sin 30-m g \cos 30=0$

NEWTON'S LAWS OF MOTION

1st Law Every object remains at rest or moves with constant velocity unless an external force is applied

- Constant velocity - system is in equalibrium
- net force (resultant force) $=0$
- in vector form - equate the i and j components to zero

2nd Law \quad F = ma \quad Net Force $=$ mass x acceleration

- Always work out and state Net force clearly before equating to ma
- Check - if acceleration is positive - net force should also be positive

Example : A taut cable 25 m long is fixed at 35° to the horizontal. A light rope ring is placed around the cable at the upper end. A soldier of mass 8 kg grabs the rope ring and slides down the cable.

If the coefficient of friction between the ring and the cable is 0.4 , how fast is the soldier moving when he reaches the bottom

> i- direction : $784 \cos 35=\mathrm{R}$
> $\mathrm{j}-$ direction : $784 \sin 35-\mathrm{F}=\mathrm{ma}$

Motion - friction is limiting so $F=0.4 R$

$784 \sin 35-0.4 \times 784 \cos 35=80 a$

$$
\begin{array}{ll}
a=2.41 \mathrm{~ms}^{-2} & \mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{as} \\
u=0 & \mathrm{v}^{2}=0^{2}+2 \times 2.41 \times 25 \\
s=25 & v=11.0 \mathrm{~ms}^{-1}
\end{array}
$$

3rd Law For every action there is an equal and opposite reaction

Connected Particles

- Trains and trailers

Finding the acceleration ($\mathrm{F}=\mathrm{ma}$)
Net Force $=14000-4000-1500$

$$
=8500 \mathrm{~N}
$$

$$
\begin{aligned}
8500 & =(3000+10000) \mathrm{a} \\
\mathrm{a} & =0.654 \mathrm{~ms}^{-2}
\end{aligned}
$$

Finding the Tension in the coupling

- To keep it simple - use the body which has no direct force applied e.g. the trailer

$$
\begin{array}{rl}
\text { Net Force }=\mathrm{T}-1500 & \mathrm{~T}-1500 \\
=3000 \times 0.654 \\
\mathrm{~T} & =3451.5 \mathrm{~N}
\end{array}
$$

- Stings and Pulleys

Always draw a diagram - if known show direction of acceleration

Finding the acceleration

$$
\begin{align*}
& 0.4 \mathrm{~g}-\mathrm{T}=0.4 \mathrm{a} \\
& \mathrm{~T}-0.3 \mathrm{~g}=0.3 \mathrm{a} \tag{+}\\
& 0.1 \mathrm{~g}=0.7 \mathrm{a} \\
& \mathrm{a}=1.4 \mathrm{~ms}^{-2}
\end{align*}
$$

Force on the pulley $=T+T$

Finding the tension $\mathrm{a}=1.4$ substitute into either equation (or both just to check)
$\mathrm{T}=0.3 \mathrm{~g}+0.3 \times 1.4$
$\mathrm{T}=3.36 \mathrm{~N}$
0.3 kg

- A quantity of motion measured in Newton Seconds
- Momentum = mass x velocity
- The total momentum of a system remains the same unless an external force is applied - Conservation of Momentum

Draw diagrams to show before/after masses and velocities

Momentum $=5 \times 10-8 \times 6$

Example : Particle P of mass 6 kg has velocity ($4 \mathrm{i}+2 \mathrm{j}$). After a collision with another particle, P has velocity $(2 i-3 j)$. Find the momentum lost by P during the collisison

Momentum of P before $=6(4 i+2 j) \quad$ Momentum of P after $=6(2 i-3 j)$

$$
=24 i+12 j \quad=12 i-18 j
$$

$$
\begin{aligned}
\text { Momentum lost } & =(24 i+12 j)-(12 i-18 j) \\
& =12 i+30 j
\end{aligned}
$$

Projectiles

- You cannot just quote formulae - you must show how they are derived
- Initial Velocity: $u=U \cos \theta i+U \sin \theta j$
- Acceleration : a = - 9.8j
- Velocity (after ts) : v = (Ucos $\theta \mathrm{i}+\mathrm{Usin} \theta \mathrm{j})$ - 9.8 tj

Particle moving in a vertical direction when

$$
U \cos \theta=0
$$

Particle moving in a horizontal direction when

$$
\begin{gathered}
U \sin \theta-9 \cdot 8 \mathrm{t}=0 \\
\text { [f] }
\end{gathered}
$$

Displacement (r): r=ut+1/2at ${ }^{2}$

$$
r=U t \cos \theta i+\left(U t \sin \theta-1 / 29 \cdot 8 t^{2}\right) j
$$

Horizontal dispalcement after t seconds

Height (vertical dispalcement) after t seconds

Height component $=0$
Solve
Ut $\sin \theta-1 / 29 \cdot 8 t^{2}=0$
To find t

Substitute into
Range $=\mathrm{Ut} \cos \theta$

Example

A shot putter releases a shot at a height of 2.5 m and with a velocity of $10 \mathrm{~ms}^{-1}$ at 50° to the horizontal. Find the distance travelled by the shot.

$\mathbf{u}=10 \cos 50^{\circ} \mathrm{i}+10 \sin 50^{\circ} \mathrm{j}$
Displacement from the point of projection $r=\left(10 \cos 50^{\circ} i+10 \sin 50^{\circ} j\right) t-4.9 t^{2} j$

Displacement form the origin

$$
r=10 t \cos 50^{\circ} i+\left(2.5+10 \sin 50^{\circ} t-4.9 t^{2}\right) j
$$

Horizontal distance from origin
Height above ground (j component)
So shot hits ground when
$2.5+10 \sin 50^{\circ} t-4.9 t^{2}=0$

$$
4.9 t^{2}-7.66 t-2.5=0
$$

$\mathrm{t}=\mathbf{- 2 . 7 7}$ or $\mathbf{t}=\mathbf{1 . 8 4}$

Distance $=10 \times 1.84 \times \cos 50^{\circ}$
$=11.8 \mathrm{~m}$

Modelling Assumptions

Common Terms and Meanings

Term	Applies to	What is disregarded
Inextensible	Strings, rods	Stretching
Thin	Strings, rods	Diameter, thickness
Light	Strings, springs, rods	Mass
Particle	Object of negligible size	Rotational motion, size
Rigid	Rods	Bending
Small	Object of negligible size	Rotational motion
Smooth	Surfaces, pulleys	Friction

Assumptions made

- motion takes place in a straight line -
- acceleration is constant
- air resistance can be ignored
- objects are modelled as masses concentrated at a single point (no rotation)
- g is assumed to be $9.8 \mathrm{~m} \mathrm{~s}^{-2}$ everywhere at or near the Earths surface

