Algebra: polynomials

Introduction

A polynomial is an expression which:

- consists of a sum of a finite number of terms
- has terms of the form $\mathbf{k x}^{\mathbf{n}}$ (\mathbf{x} a variable, \mathbf{k} a constant, \mathbf{n} a positive integer)

Every polynomial in one variable (eg ' x ') is equivalent to a polynomial with the form:

$$
\mathrm{a}_{n} x^{n}+\mathrm{a}_{n-1} x^{n-1}+\mathrm{a}_{n-1} x^{n-1} \ldots+\mathrm{a}_{2} x^{2}+\mathrm{a}_{1} x^{1}+\mathrm{a}_{0}
$$

Polynomials are often described by their degree of order. This is the highest index of the variable in the expression.
eg: containing x^{5} order 5 , containing x^{7} order 7 etc.

These are NOT polynomials:

$$
3 x^{2}+x^{1 / 2}+x
$$

second term has an index which is not an integer(whole number)

$$
5 x^{-2}+2 x^{-3}+x^{-5}
$$

indices of the variable contain integers which are not positive
examples of polynomials:

$$
\begin{gathered}
x^{5}+5 x^{2}+2 x+3 \\
\left(x^{7}+4 x^{2}\right)(3 x-2) \\
x+2 x^{2}-5 x^{3}+x^{4}-2 x^{5}+7 x^{6}
\end{gathered}
$$

Algebraic long division

If
$\mathbf{f}(\mathbf{x})$ the numerator and $\mathbf{d}(\mathbf{x})$ the denominator are polynomials
and
the degree of $d(x)<=$ the degree of $f(x)$
and

$$
d(x) \text { does not }=0
$$

then two unique polynomials $\mathbf{q}(\mathbf{x})$ the quotient and $\mathbf{r}(\mathbf{x})$ the remainder exist, so that:

$$
\frac{f(x)}{d(x)}=q(x)+\frac{r(x)}{d(x)}
$$

Note - the degree of $r(x)<$ the degree of $d(x)$.
We say that $d(x)$ divides evenly into $f(x)$ when $r(x)=0$.
Example

$$
\frac{5 x^{3}+x^{2}-3 x+2}{x^{2}-2 x+5}
$$

$$
\begin{array}{r}
x^{2}-2 x+5 \begin{array}{|}
5 x+11 \\
\frac{-\left(5 x^{3}-10 x^{2}+25 x\right)}{11 x^{2}-28 x+2} \\
-\frac{\left(11 x^{2}-22 x+55\right)}{-6 x-53}
\end{array}
\end{array}
$$

$$
\frac{5 x^{3}+x^{2}-3 x+2}{x^{2}-2 x+5}=5 x+11+\left(\frac{-6 x-53}{x^{2}-2 x+5}\right)
$$

$$
=5 x+11-\left(\frac{6 x+53}{x^{2}-2 x+5}\right)
$$

The Remainder Theorem
If a polynomial $f(x)$ is divided by $(x-a)$, the remainder is $f(a)$.

Example

Find the remainder when $\left(2 x^{3}+3 x+x\right)$ is divided by $(x+4)$.

$$
f(x)=2 x^{3}+3 x^{2}+x \text { is divided by }(x+4)
$$

If a polynomial $f(x)$ is divided by $(x-a)$, the remainder is $f(a)$.
$\Rightarrow \quad(x+4)=(x-a), \quad \therefore a=-4$
$f(-4)=2(-4)^{3}+3(-4)^{2}+(-4)$
$=-128+48-4$
$=-84$
the remainder is -84

The reader may wish to verify this answer by using algebraic division.

The Factor Theorem
(a special case of the Remainder Theorem)

$$
(x-a) \text { is a factor of the polynomial } f(x) \text { if } f(a)=0
$$

Example

use the Factor Theorem to find factors of the function

$$
f(x)=x^{3}+3 x^{2}-x-3
$$

choosing factors of the highest constant 3

$$
1,-1,3,-3
$$

$$
f(1)=(1)^{3}+3(1)^{2}-(1)-3
$$

$$
=1+3-1-3=0 \quad \therefore(x-1) \text { a factor }
$$

$$
f(-1)=(-1)^{3}+3(-1)^{2}-(-1)-3
$$

$$
=-1+3+1-3=0 \quad \therefore(x+1) \text { a factor }
$$

$$
f(3)=(3)^{3}+3(3)^{2}-(3)-3
$$

$$
=27+27-3-3=48 \quad \therefore(x-3) \text { not a factor }
$$

$$
f(-3)=(-3)^{3}+3(-3)^{2}-(-3)-3
$$

$$
=-27+27+3-3=0 \quad \therefore(x+3) \text { a factor }
$$

$$
\therefore \quad x^{3}+3 x^{2}-x-3=(x-1)(x+1)(x+3)
$$

n.b. the sign change of the constant $f(5) \Rightarrow(x-5)$

