Algebra: Functions

Introduction

To thoroughly understand the terms and symbols used in this section it is advised that you visit 'sets of numbers' first.

Mapping(or function)

This a 'notation' for expressing a relation between two variables(say x and y).

Individual values of these variables are called elements

$$
\text { eg } x_{1} x_{2} x_{3} \ldots \quad y_{1} y_{2} y_{3} \ldots
$$

The first set of elements (x) is called the domain.

The second set of elements (y) is called the range .

A simple relation like $y=x^{2}$ can be more accurately expressed using the following format:

$$
\left\{(x, y): y=x^{2}, x, y \in \mathbb{R}\right\}
$$

The last part relates to the fact that x and y are elements of the set of real numbers R (any positive or negative number, whole or otherwise, including zero)

One-One mapping

Here one element of the domain is associated with one and only one element of the range.

A property of one-one functions is that a on a graph a horizontal line will only cut the graph once.

Example

$$
\left\{(x, y): y=x+2, x, y \in \mathbb{R}^{+}\right\}
$$

R^{+}the set of positive real numbers

Many-One mapping

Here more than one element of the domain can be associated with one particular element of the range.

Example

$$
\left\{(x, y): y=x^{2}, x, y \in \mathbb{Z}, \quad-4 \leq x \leq 4, \quad x \neq 0\right\}
$$

Z is the set of integers(positive \& negative whole numbers not including zero)

Complete function notation is a variation on what has been used so far. It will be used from now on.

$$
\begin{array}{ll}
& \left\{(x, y): y=x^{2}, x, y \in \mathbb{R}\right\} \\
\text { becomes } \quad & \left\{f: x \mapsto x^{2}, x \in \mathbb{R}\right\}
\end{array}
$$

Inverse Function $\mathbf{f}^{\mathbf{- 1}}$

The inverse function is obtained by interchanging x and y in the function equation and then rearranging to make y the subject.

If f^{-1} exists then,

$$
\mathrm{ff}^{-1}(x)=\mathrm{f}^{-1} \mathrm{f}(x)=x
$$

It is also a condition that the two functions be 'one to one'. That is that the domain of \mathbf{f} is identical to the range of its inverse function $\mathbf{f}^{\mathbf{- 1}}$.

When graphed, the function and its inverse are reflections either side of the line $\boldsymbol{y}=\boldsymbol{x}$.

Example

Find the inverse of the function(below) and graph the function and its inverse on the same axes.

$$
\begin{aligned}
& \{f: x \mapsto 2 x+3, x \in \mathbb{R}\} \\
& \Rightarrow \quad y=2 x+3 \\
& \text { interchanging } x \text { and } y \\
& \Rightarrow \quad x=2 y+3 \\
& \Rightarrow \quad x-3=2 y \\
& \Rightarrow \quad 2 y=x-3 \\
& \Rightarrow \quad y=\frac{1}{2}(x-3) \\
& \Rightarrow \quad\left\{f^{-1}: x \mapsto \frac{1}{2}(x-3), x \in \mathbb{R}\right\}
\end{aligned}
$$

Composite Functions

A composite function is formed when two functions $\boldsymbol{f}, \boldsymbol{g}$ are combined.

However it must be emphasized that the order in which the composite function is determined is important.

$$
f[g(x)] \neq g[f(x)]
$$

The method for finding composite functions is:

```
find \(g(x)\)
```

find $f[g(x)]$

Example

For the two functions,

$$
\begin{array}{ll}
\{f: x \mapsto 2 x-1, & x \in \mathbb{R}\} \\
\{g: x \mapsto 3 x+2, & x \in \mathbb{R}\}
\end{array}
$$

find the composite functions (i $f g$ (ii $g f$

$$
\begin{aligned}
& \{f: x \mapsto 2 x-1, x \in \mathbb{R}\} \\
& (g: x \mapsto 3 x+2, \quad x \in \mathbb{R}\} \\
& f g(x)=f(3 x+2) \\
& =2(3 x+2)-1 \\
& =6 x+4-1 \\
& =6 x+3 \\
& \Rightarrow\{f g: x \mapsto, 6 x+3, x \in \mathbb{R}\} \\
& g f(x)=g(2 x-1) \\
& =3(2 x-1)+2 \\
& =6 x-3+2 \\
& =6 x-1 \\
& \Rightarrow \underline{\{g f: x \mapsto, 6 x-1, \quad x \in \mathbb{R}\}}
\end{aligned}
$$

Exponential \& Logarithmic Functions

Exponential functions have the general form:

$$
\left\{f: x \mapsto a^{x}, \quad x \in \mathbb{R}\right\}
$$

where ' a ' is a positive constant

However there is a specific value of 'a' at (0.1) when the gradient is 1 . This value, $\mathbf{2 . 7 1 8}$... or ' \mathbf{e} ' is called the exponential function.

$$
\left\{f: x \mapsto e^{x}, \quad x \in \mathbb{R}\right\}
$$

The function(above) has one-one mapping. It therefore possesses an inverse. This inverse is the logarithmic function.

$$
\begin{aligned}
& y=e^{x} \\
& \Rightarrow \quad \therefore \text { the inverse is } x=e^{y} \\
& \Rightarrow \quad \log _{e} x=\log _{e} e^{y} \\
& \Rightarrow \quad \log _{e} x=y \log _{e} e \\
& \text { but } \log _{e} e=1 \\
& \therefore \quad \log _{e} x=y \\
& y=\log _{e} x \\
& \text { or } \quad \underline{y=\ln x}
\end{aligned}
$$

