The Binomial Theorem

Introduction

This section of work is to do with the expansion of $(a+b)^{n}$ and $(1+x)^{n}$.
Pascal's Triangle and the Binomial Theorem gives us a way of expressing the expansion as a sum of ordered terms.

Pascal's Triangle

This is a method of predicting the coefficients of the binomial series.

Coefficients are the constants(1,2,3,4,5,6 etc.) that multiply each variable, or group of variables.

Consider $(a+b)^{n}$ variables a, b.

> 1
> 11
> 121
> 1331
> 144641
> 15101051

The first line represents the coefficients for $n=0$.

$$
(a+b)^{0}=1
$$

The second line represents the coefficients for $n=1$.

$$
(a+b)^{1}=a+b
$$

The third line represents the coefficients for $n=2$.

$$
(a+b)^{2}=a^{2}+2 a b+b^{2}
$$

The sixth line represents the coefficients for $n=5$.

$$
(a+b)^{5}=a^{5}+5 a^{4} b+10 a^{3} b^{2}+10 a^{2} b^{3}+5 a b^{4}+b^{5}
$$

The Binomial Theorem builds on Pascal's Triangle in practical terms, since writing out triangles of numbers has its limits.

The General Binomial Expansion ($n \geq 1$)
This is a way of finding all the terms of the series, the coefficients and the powers of the variables.

The coefficients, represented by ${ }^{\mathrm{n}} \mathrm{C}_{r}$, are calculated using probability theory. For a deeper understanding you may wish to look at where ${ }^{n} C_{r}$ comes from; but for now you must accept that:

$$
{ }^{n} C_{r}=\frac{n!}{(n-r)!r}
$$

where ' n ' is the power/index of the original expression and ' r ' is the number order of the term minus one

If n is a positive integer, then:

$$
(a+b)^{n}=a^{n}+{ }^{n} C_{1} a^{n-1} b+{ }^{n} C_{2} a^{n-2} b^{2} \ldots+{ }^{n} C_{,} a^{n-r} b^{\gamma}+\ldots b^{n}
$$

Example \#1

$$
\begin{aligned}
& (a+b)^{5}=a^{5}+{ }^{5} C_{1} a^{4} b+{ }^{5} C_{2} a^{3} b^{2}+{ }^{5} C_{3} a^{2} b^{3}+{ }^{5} C_{4} a b^{4}+b^{5} \\
& { }^{5} C_{1}=\frac{5!}{(5-1)!1!}=\frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(4 \cdot 3 \cdot 2 \cdot 1) 1}=5 \\
& { }^{5} C_{2}=\frac{5!}{(5-2)!2!}=\frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(3 \cdot 2 \cdot 1) 2.1}=\frac{5.4}{2.1}=\frac{20}{2}=10 \\
& { }^{5} C_{3}=\frac{5!}{(5-3)!3!}=\frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(2 \cdot 1) 3 \cdot 2 \cdot 1}=\frac{5 \cdot 4}{2 \cdot 1}=\frac{20}{2}=10 \\
& { }^{5} C_{4}=\frac{5!}{(5-4)!4!}=\frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(1) 4 \cdot 3 \cdot 2 \cdot 1}=5 \\
& (a+b)^{5}=a^{5}+5 a^{4} b+10 a^{3} b^{2}+10 a^{2} b^{3}+5 a b^{4}+b^{5}
\end{aligned}
$$

Example \#2

write down $(3 x-2)^{5}$ as a binomial expansion
using
$(a+b)^{5}=a^{5}+{ }^{5} C_{1} a^{4} b+{ }^{5} C_{2} a^{3} b^{2}+{ }^{5} C_{3} a^{2} b^{3}$
$+{ }^{5} C_{4} a b^{4}+b^{5}$
and the values of the coefficients from previous

$$
\begin{aligned}
& \text { let } a=3 x, b=-2 \\
& (3 x-2)^{5}=(3 x)^{5}+{ }^{5} C_{1}(3 x)^{4}(-2)+{ }^{5} C_{2}(3 x)^{3}(-2)^{2} \\
& +{ }^{5} C_{3}(3 x)^{2}(-2)^{3}+{ }^{5} C_{4}(3 x)(-2)^{4}+(-2)^{5} \\
& (3 x-2)^{5}=243 x^{5}+5\left(81 x^{4}\right)(-2)+10\left(27 x^{3}\right)(4) \\
& +10\left(9 x^{2}\right)(-8)+5(3 x)(16)+(-32) \\
& (3 x-2)^{5} \\
& =243 x^{5}-810 x^{4}+1080 x^{3}+720 x^{2}+240 x-32
\end{aligned}
$$

It is suggested that the reader try making similar questions, working through the calculations and checking the answer \qquad (max. value of $n=8$)

The Particular Binomial Expansion
This is for $(1+x)^{n}$, where n can take any value positive or negative, and \mathbf{x} is a fraction ($1<x<1$).

$$
(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-2)}{3!} x^{3}+\ldots
$$

Example

Find the first 4 terms of the expression $(x+3)^{1 / 2}$.

$$
\begin{aligned}
& \text { making }(x+3)^{1 / 2} \text { in the form of }(1+x)^{n} \\
& (x+3)^{1 / 2}=(3+x)^{1 / 2}=\left\{3\left(1+\frac{x}{3}\right)\right\}^{1 / 2} \\
& =\sqrt{3}\left[1+\frac{\left(\frac{1}{2}\right)\left(\frac{x}{3}\right)}{1}+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(\frac{x}{3}\right)^{2}}{2 \cdot 1}\right. \\
& \left.+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(\frac{x}{3}\right)^{3}}{3.2 \cdot 1}\right] \\
& =\sqrt{3}\left[1+\frac{x}{6}-\frac{1}{4} \cdot \frac{1}{2} \cdot \frac{x^{2}}{9}+\frac{3}{8} \cdot \frac{1}{6} \cdot \frac{x^{3}}{27}+\ldots\right] \\
& =\sqrt{3}\left[1+\frac{x}{6}-\frac{x^{2}}{72}+\frac{3 x^{3}}{1296}+\ldots\right] \\
& (x+3)^{1 / 2}=\sqrt{3}+\frac{\sqrt{3} x}{6}-\frac{\sqrt{3} x^{2}}{72}+\frac{\sqrt{3} x^{3}}{1296} \ldots
\end{aligned}
$$

